

MEAP Edition
Manning Early Access Program

Elasticsearch in Action
Version 11

Copyright 2014 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871
Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=871
http://www.manning.com/
http://www.manning-sandbox.com/forum.jspa?forumID=871

Welcome

Thanks for purchasing the MEAP for Elasticsearch in Action. We're excited to see the book
reach this stage, and we're looking forward to its continued development and eventual
release. This is an intermediate level book, designed for anyone writing applications
using Elasticsearch, or responsible for managing Elasticsearch in a production environment.

We've worked to make the content both approachable and meaningful, and to explain not
just how to do things with Elasticsearch, but also why things are done the way they are. We
feel it's important to know Elasticsearch's foundations prior to diving into all of the different
ways you can leverage it.

We’re releasing the first five chapters to start. Chapter 1 explains what Elasticsearch is:
what a typical use-case looks like, the tasks it's good at, and the challenges it faces. By the
end of chapter one, you'll know if Elasticsearch is likely to be a good fit for you and what you
can expect from it. You will also learn various ways to install it.

Chapter 2 is about getting your hands dirty with Elasticsearch's functionality. You will
understand how data is organized, both logically and physically. By the end, you'll know how
to index and search for documents, as well as how to configure Elasticsearch.

Chapter 3 is all about indexing, updating and deleting documents. You will understand the
types of fields you can have in your documents – all of which goes into your mapping
definition, as well as how updating and deleting data works under the covers.

Chapter 4 is all about searching. You will understand most types of queries, and when
you'll use which. You will also get a clear idea about the difference between queries and
filters: how they work and where you'd use which.

Chapter 5 explains analysis, which is a big chunk of how Elasticsearch can make your
searches fast, and also return the right results in the right order. Analysis is the process of
making tokens out of your text and by the end, you'll understand how it works and how to
configure analysis for your use-case.

Looking ahead in part 2, other chapters will deal with more advanced functionality: how
to make searches more relevant – where you'll discover some more query types; how to
work with relational data, and how to extract statistics from your data in real-time, using
aggregations. We'll also show how to make Elasticsearch perform to your production
standards: we'll talk about scaling out, tuning indexing and search performance, as well as
administering your cluster.

As you're reading, we hope you’ll take advantage of the Author Online forum. We’ll be
reading your comments and responding. We appreciate any feedback, as it's very helpful in
the development process. Thanks again!

Matthew Lee Hinman and Radu Gheorghe

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871
Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=871

brief contents

PART 1: CORE ELASTICSEARCH FUNCTIONALITY

1 Introducing Elasticsearch

2 Diving into the functionality

3 Indexing, updating and deleting data

4 Searching your data

5 Analyzing your data

6 Searching with relevancy

7 Exploring your data with Aggregations

8 Relations among documents

PART 2: ADVANCED FUNCTIONALITY

9 Scaling out

10 Improving performance

11 Administering your cluster

APPENDIXES:

Appendix A Working with geo-spatial data

Appendix B Plugins

Appendix C Highlighting

Appendix D Introduction to the Java API

Appendix E JVM and JC tuning 101

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871
Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=871

1
Introducing Elasticsearch

This chapter covers

• Understanding search engines and the issues they address
• How Elasticsearch fits in the context of search engines
• Typical scenarios for Elasticsearch
• Features Elasticsearch provides
• Installing Elasticsearch

We use search everywhere these days. And that’s a good thing, because search helps you
finish tasks quickly and easily. Whether you’re buying something from an online shop or
visiting a blog, you expect to have a search box somewhere to help you find what you’re
looking for, without scanning the entire website. Maybe it’s me, but when I wake up in the
morning, I wish I could enter the kitchen and type in “bowl” in a search box somewhere and
have my favorite bowl highlighted.

We’ve also come to expect those search boxes to be smart. I don’t want to have to type
the entire word “bowl”; I expect the search box to come up with suggestions, and I don’t want
results and suggestions to come to me in random order. I want the search to be smart and
give me the most relevant results first: to guess what I want, if that’s possible. For example, if
I search for “laptop” from an online shop but have to scroll through laptop accessories before I
get to a laptop, I’m likely to go somewhere else after the first page of results. And this isn’t
only because we’re in a hurry and spoiled with good search interfaces, it’s also because there’s
increasingly more stuff to choose from. For example, a friend asked me to help her buy a new
laptop. Typing “best laptop for my friend” in the search box of an online store that sells

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

1

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

thousands of laptops wouldn’t be effective. Good keyword search is often not enough; you
need aggregated data so you can narrow down the results to what the user is interested in. I
narrowed down my laptop search by selecting the size of the screen, the price range, and so
on, until I had five or so laptops to choose from.

Finally, there’s the matter of performance—because nobody wants to wait. I’ve seen
websites where you search for something and get the results in few minutes. Minutes! For a
search.

If you want to provide search for your data, you’ll have to deal with all these issues:
returning relevant search results, returning statistics, and doing all that quickly. This is where
search engines like Elasticsearch come into play because they’re built to meet exactly those
challenges.

You can deploy a search engine on top of a relational database to create indexes and
speed up the SQL queries. Or, you can index data from your NoSQL data store to add search
capabilities there. You can do that with Elasticsearch, and it works well with document-
oriented stores like MongoDB because data is represented in Elasticsearch as documents, too.

Modern search engines like Elasticsearch also do a good job storing your data, so you can
use it as a NoSQL data store with powerful search capabilities. Elasticsearch is open-source,
distributed, and it’s built on top of Apache Lucene, an open-source search engine library,
which allows you to implement search functionality in your own Java application. Elasticsearch
takes this functionality and extends it to make storing, indexing, and searching faster, easier,
and, as the name suggests, elastic. Also, your application doesn’t need to be written in Java to
work with Elasticsearch; you can send data over HTTP in JSON to index, search, and manage
your Elasticsearch cluster.

In this chapter, we expand on these searching and data features, and you’ll learn to use
them throughout this book. First, let’s take a closer look at the challenges search engines are
typically confronted with and Elasticsearch’s approach to solving them.

1.1 Elasticsearch as a search engine
To get a better idea of how Elasticsearch works, let’s look at an example. Imagine that you’re
working on a website that hosts blogs, and you want to let users search across the entire site
for specific posts. Your first task is to implement keyword search. For example, if a user
searches for “elections”, you’d better return all posts containing that word.

A search engine will do that for you, but for a robust search feature, you need more than
that: results need to come in quickly, and they need to be relevant. And it’s also nice to
provide features that help users search when they don’t know the exact words of what they’re
looking for. Those features include detecting typos, providing suggestions, and breaking down
results into categories.

TIP In most of this chapter, you’ll get an overview of Elasticsearch’s features. If you want to get
practical and jump to installing it, skip to section 1.5. You’ll find the installation procedure
surprisingly easy. And you can always come back here for the high-level overview.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

2

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

1.1.1 Providing quick searches
If you have a huge number of posts on your site, searching through all of them for the word
“elections” can take a long time. And you don’t want your users to wait. That’s where
Elasticsearch helps because it uses Lucene, a high-performance search engine library, to index
all your data by default.

An index is a data structure, which you create along with your data and is meant to allow
faster searches. You can add indexes to fields in most databases, and there are several ways
to do it. Lucene does it with inverted indexing, which means it creates a data structure where
it keeps a list of where each word belongs. For example, if you need to search for blog posts
by their tags, using inverted indexing might look like table 1.1.

Table 1.1 Inverted index for blog tags

Raw data Index data

Blog Post ID Tags Tags Blog Post IDs

1 elections elections 1,3

2 peace peace 2,3,4

3 elections, peace

4 peace

If you search for blog posts that have an elections tag, it’s much faster to look at the index
rather than looking at each word of each blog post, because you only have to look at the place
where tags is “elections”, and you’ll get all the corresponding blog posts. This speed gain
makes sense in the context of a search engine. In the real world, you’re rarely searching for
one word only. For example, if you’re searching for “Elasticsearch in Action”, three-word look
ups imply multiplying your speed gain by three. All this may seem a bit complex at this point,
but we’ll clear up the details when we discuss indexing in chapter 3 and searching in chapter
4.

An inverted index is appropriate for a search engine when it comes to relevance, too. For
example, when you’re looking up a word like “peace”, not only will you see which document
matches, but you’ll also get the number of matching documents for free. This is important
because if a word occurs in most documents, it’s probably less relevant. Let’s say you search
for “Elasticsearch in Action”, and a document contains the word “in”—along with a million
other documents. At this point, you know that “in” is a common word, and the fact that this
document matched doesn’t say much about how relevant it is to your search. In contrast, if it

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

3

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

contains “Elasticsearch”, along with a hundred others, you know you’re getting closer to
relevant documents. Although, it’s not “you” who has to know you’re getting closer,
Elasticsearch does that for you. You’ll learn all about tuning data and searches for relevancy in
chapter 6.

That said, the tradeoff for improved search performance and relevancy is that the index
will take up disk space, and adding new blog posts will be slower because you have to update
the index after adding the data itself. On the upside, tuning can make Elasticsearch faster,
both when it comes to indexing and searching. We’ll discuss these topics in great detail in
chapter 10.

1.1.2 Ensuring relevant results
Then there’s the hard part: how do you make the blog posts that are about elections appear
before the ones that merely contain that word? With Elasticsearch, you have a few algorithms
for calculating the relevancy score, which is used, by default, to sort the results.

The relevancy score is a number assigned to each document that matches your search
criteria and indicates how relevant the given document is to the criteria. For example, if a blog
post contains “elections” more times than another, it’s more likely to be about elections.

By default, the algorithm used to calculate a document’s relevancy score is tf-idf. We’ll
discuss scoring and tf-idf more in chapters 4 and 6, which are about searching and relevancy,
but here’s the basic idea: tf-idf comes from term frequency–inverse document frequency,
which are the two factors that influence relevancy score:

• Term frequency—The more times the words you’re looking for appear in a document,
the higher the score

• Inverse document frequency—The weight of each word is higher if the word is
uncommon across other documents

For example, if you’re looking for “bicycle race” on a cyclist’s blog, the word “bicycle”
counts much less for the score than “race.” But the more times both words appear in a
document, the higher that document’s score.

In addition to choosing an algorithm, Elasticsearch provides many other built-in features to
influence the relevancy score to suit your needs. For example, you can “boost” the score of a
particular field, such as the title of a post, to be more important than the body. This gives
higher scores to documents that match your search criteria in the title, compared to similar
documents that match only the body. You can make exact matches count more than partial
matches, and you can even use a script to add custom criteria to the way the score is
calculated. For example, if you let users like posts, you can boost the score based on the
number of likes, or you can make newer posts have higher scores than similar, older posts.

Don’t worry about the mechanics of any of these features right now; we discuss relevancy
in great detail in chapter 6. For now, let’s focus on what you can do with Elasticsearch and
when you’d want to use those features.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

4

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

1.1.3 Searching beyond exact matches
Finally, with Elasticsearch you have options to make your searches intuitive and go beyond
exactly matching what the user types in. These options are handy when the user enters a typo
or uses a synonym or a derived word different than what you’ve stored. And they’re also
handy when the user doesn’t know exactly what to search for in the first place.

HANDLING TYPOS
You can configure Elasticsearch to be tolerant of variations instead of looking for only exact
matches. A fuzzy query can be used so a search for “bicycel” will match a blog post about
bicycles. We explore fuzzy queries and other features that make your searches relevant in
chapter 6.

SUPPORTING DERIVATIVES
You can also use analysis, covered in chapter 5, to make Elasticsearch understand that a blog
with “bicycle” in its title should also match queries that mention “bicyclist” or “cycling”.

USING STATISTICS
When users don’t know what to search for, you can help them in a number of ways. One way
is to present statistics through aggregations, which we cover in chapter 8. Imagine that upon
entering your blog, users see popular topics listed on the right-hand side. One topic may be
cycling. Those interested in cycling would click that topic to narrow the results. Then, you
might have another facet to separate cycling posts into “bicycle reviews,” “cycling events,”
and so on.

PROVIDING SUGGESTIONS
Once users start typing, you can help them discover popular searches and popular results. You
can use suggestions to predict their searches as they type, like most search engines on the
web do. You can also show popular results as they type, using special query types that match
prefixes, wild cards, or regular expressions.

Let’s look now at how Elasticsearch is typically used in production.

1.2 Typical setups using Elasticsearch
We’ve already established that storing and indexing your data in Elasticsearch is a good way
to provide quick and relevant results to your searches. But in the end, Elasticsearch is just a
search engine, and you’ll never use it on its own. Like any other data store, you need a way to
feed data into it, and you probably need to provide an interface for the users searching that
data.

To get an idea of how Elasticsearch might fit into a bigger system, let’s consider three
typical scenarios.

• Elasticsearch as the primary back end for your website

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

5

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As we discussed, you may have a website that allows people to write blog posts, but
you also want the ability to search through the posts. You can use Elasticsearch to store
all the data related to these posts and serve queries as well.

• Adding Elasticsearch to an existing system

You may be reading this book because you already have a system that’s crunching
data, and you want to add search. We’ll look at a couple of overall designs on how that
might be done.

• Elasticsearch as the back end of a ready-made solution built around it

Because Elasticsearch is open-source and offers a straightforward HTTP interface, a big
ecosystem supports it. For example, Elasticsearch is popular for centralizing logs; given
the tools already available that can write to and read from Elasticsearch, other than
configuring those tools to work the way you want, you don’t need to develop anything.

1.2.1 One-stop shop for storing, searching, and statistics
Traditionally, search engines are deployed on top of well-established data stores to provide
fast and relevant search capability. That’s because, historically, search engines haven’t offered
durable storage or other features that are often needed, such as statistics. Elasticsearch is one
of those modern search engines that provides durable storage, statistics, and many other
features you’ve come to expect from a data store.

If you’re starting a new project, we recommend that you consider using Elasticsearch as
the only data store to help keep your design as simple as possible. You can also use
Elasticsearch on top of another data store, as we discuss later.

Let’s return to the blog example: you can store newly written blog posts in Elasticsearch.
Similarly, you can use Elasticsearch to retrieve, search, or do statistics through all that data,
as shown in figure 1.1.

Figure 1.1 Elasticsearch as the only data store

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

6

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

What happens if a server goes down? You can get fault tolerance by replicating your data
to different servers. Many other features make Elasticsearch a tempting NoSQL data store. It
can’t be great for everything, but you should weigh whether including another data store in
your overall design is worth the extra complexity.

1.2.2 Plugin search in a complex system
By itself, Elasticsearch may not always provide all the functionality you need from a data
store. These situations may require you to use Elasticsearch in addition to another data store.

For example, transaction support and complex relationships are features that Elastic
search doesn’t currently support, at least in version 1.0. If you need those features, consider
using Elasticsearch along with a different data store.

Or, you may already have a complex system that works, but you want to add search. It
might be risky to redesign the entire system for the sole purpose of using Elasticsearch alone
(though you might want to do that over time).

Either way, if you have two data stores, you’ll have to find a way to keep them
synchronized. Depending on what your primary data store is and how your data is laid out,
you can deploy an Elasticsearch plugin to keep the two entities synchronized, as illustrated in
figure 1.2.

Figure 1.2 Elasticsearch in the same system with another data store

Typically, when you synchronize two entities, Elasticsearch also stores the original data.
For example, suppose you have an online retail store with product information stored in an
SQL database. You need fast and relevant searching, so you install Elasticsearch. To index the
data, you need to deploy a synchronizing mechanism, which can be an Elasticsearch plugin or
a custom service that you build. You’ll learn more about plugins in appendix B and about
dealing with indexing and updating from your own application in chapter 3. This synchronizing

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

7

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

mechanism could pull all the data corresponding to each product and index it in Elasticsearch,
where each product is stored as a document. When a user types in search criteria on the web
page, the storefront web application queries Elasticsearch for that criteria. Elasticsearch
returns a number of product documents that match the criteria, sorted in the way you prefer.
Sorting can be based on a relevance score that indicates how many times the words people
searched for appear in each product, or anything stored in the product document, such as how
recently the product was added, or the average rating, or even a combination of those.

Inserting or updating information can still be done on the “primary” SQL database, so you
can use Elasticsearch solely for handling searches. It’s up to the synchronizing mechanism to
keep Elasticsearch up to date with the latest changes.

1.2.3 Use it with existing tools
In some use cases, you don’t have to write a single line of code to get a job done with
Elasticsearch. Many tools are available that work with Elasticsearch, so you don’t have to write
yours from scratch.

For example, say you want to deploy a large-scale logging framework to store, search, and
analyze a large number of events. As shown in figure 1.3, to process logs and output to
Elasticsearch, you can use logging tools such as rsyslog1, Logstash2 or Apache Flume3. To
search and analyze those logs in a visual interface, you can use Kibana.4

Figure 1.3 Elasticsearch in a system of logging tools, which support Elasticsearch out of the box

The fact that Elasticsearch is open source, under the Apache 2 license to be precise, isn’t
the only reason that so many tools support it. Even though Elasticsearch is written in Java,

1 www.rsyslog.com/
2 www.elasticsearch.org/overview/logstash/
3 https://flume.apache.org/
4 www.elasticsearch.org/overview/kibana/

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

8

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.rsyslog.com/
http://www.elasticsearch.org/overview/logstash/
https://flume.apache.org/
http://www.elasticsearch.org/overview/kibana/
http://www.manning-sandbox.com/forum.jspa?forumID=871

there’s more than a Java API that lets you work with it. It also exposes an HTTP API, which
any application can access, no matter the programming language it was written in.

What’s more, the HTTP requests and replies are typically in JSON (JavaScript Object
Notation) format. Every HTTP request has its payload in JSON, and every reply is also a JSON
document.

JSON and YAML
JSON is a format for expressing data structures. A JSON object typically contains keys and values,
where values can be strings, numbers, true/false, null, another object or an array. For more details
about the JSON format, visit http://json.org
JSON is easy for applications to parse and generate. YAML (YAML Ain’t Markup Language), is also
supported for the same purpose. To activate YAML, add the format=yaml parameter to the HTTP
request. For more details on YAML, visit http://yaml.org

Although JSON is typically used for HTTP communication, the configuration files are usually
written in YAML. In this book, we stick with the popular formats: JSON for HTML communication and
YAML for configuration.

For example, a log event might look like this when you index it in Elasticsearch:

{
 "message": "logging to Elasticsearch for the first time", #A
 "timestamp": "2013-08-05T10:34:00Z", #B
}

#A A field with a string value
#B A string value can be a date, which Elasticsearch evaluates automatically

NOTE Throughout this book, JSON field names are shown in blue and their values are in red to
make the code easier to read.

And a search request for log events with a value of first in the message field would look
like this:

{
 "query": {
 "match": { #A
 "message": "first" #B
 } #A
 }
}

#A The value of the field query is an object containing the field match
#B The match field contains another object in which first is the value of message

Sending data and running queries by sending JSON objects over HTTP makes it easy for
you to extend anything, from a syslog daemon like rsyslog, to a connecting framework like

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

9

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://json.org
http://yaml.org
http://www.manning-sandbox.com/forum.jspa?forumID=871

Apache ManifoldCF to interact with Elasticsearch. If you’re building a new application from
scratch, or want to add search to an existing application, the REST API is one of the features
that makes Elasticsearch appealing. In the next section, we’ll look at other such features.

1.3 Data structure and interaction
Whether you’re ready to start using Elasticsearch from your application or you’re still in the
stage of evaluating it, you may have two sets of essential questions:

• How do I index, search, and run statistics on a set of data? What are the features that
let me do that, and how do they work?

When it comes to indexing and searching, much of Elasticsearch’s functionality maps to
that of Apache Lucene because Elasticsearch is built on the Lucene search engine
library. Elasticsearch exposes most of its functionality through its REST API (and
extends it in several places) and has a different implementation of some Lucene
concepts.

• How should I organize my data? What are my options in terms of data structure?

In terms of structuring your data, the main unit of indexing and searching is a
document. A document could be a blog post with all its metadata, a user with all its
metadata, or any other type of data you plan to search for. Elasticsearch is document-
oriented, as are many NoSQL data stores in which documents are organized in
document types, and document types in indices. In SQL terms, you can roughly think of
an Elasticsearch index as a database and a document type as a table in that database.

Finally, there’s the matter of extending the existing functionality of Elasticsearch.
Whether you want to synchronize Elasticsearch with an external data store, such as
MongoDB, or you want additional features, there are many plugins you can choose
from. We talk more about plugins in appendix B; for now, we’ll look at the core
functionality.

1.3.1 Understanding indexing and search functionality
Being a search engine library, anyone could use Lucene to implement search in their own Java
projects. And if you don’t work with Java, there are a few ports of Lucene in other languages.
Given that Lucene can do all the heavy lifting for you, from indexing and storing documents to
searching them in various ways, why use Elasticsearch when you can use Lucene directly?
The answer: Elasticsearch offers functionality you’ll want to use in your application that isn’t
available in Lucene because it’s out of its scope. Elasticsearch offers the following features:

• Robust caching
• An HTTP API you can use from applications written in any language
• Backward-compatibility

Elasticsearch makes most of Lucene’s features available to your application through the
REST API we mentioned previously. You can index documents over HTTP, as you’ll see in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

10

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

chapter 3, and you can run searches the same way, as you’ll see in chapter 4, but we already
established that Elasticsearch offers much more than good keyword search. We’ll discuss
statistics via aggregations in chapter 8, and you’ll see various ways to make searches more
relevant in chapter 6.

What about Apache Solr?
If you’ve already heard about Lucene, you’ve probably also heard about Solr, which is an open-
source, distributed search engine based on Lucene. In fact, Lucene and Solr merged as a single
Apache project in 2010, so you might wonder how Elasticsearch compares with Solr.
Both search engines provide similar functionality, and features evolve quickly with each new
version. You can search the web for comparisons, but we’d recommend taking them with a grain of
salt. Besides being tied to particular versions, which makes such comparisons obsolete in a matter of
months, few authors of such comparisons have in-depth knowledge of both solutions.

That said, a few historical facts help explain the origins of the two products. Solr was created in
2004 and Elasticsearch in 2010. When Elasticsearch came around, its distributed model, which is
discussed later in this chapter, made it much easier to scale out than any of the competitors, which
suggests the “elastic” part of the name. In the meantime, however, Solr added sharding with version
4.0, which makes the “distributed” argument debatable, like many other aspects.

At the time of this writing, both Elasticsearch and Solr have features that the other one doesn’t,
and choosing between them may come down to the specific functionality you need at a given point in
time. For many use cases, the functionality you need is covered by both, and, as is often the case
with competitors, choosing between them becomes a matter of taste. If you want to read more
about Solr, we recommend Manning Publication’s Solr in Action (http://solrinaction.com).

1.3.2 Analysis
Another key feature of any Lucene-based search engine is analysis. Through analysis, the
words from the text you’re indexing become terms in Elasticsearch. For example, if you index
the text “bicycle race,” analysis may produce the terms “bicycle,” “race,” “cycling,” “racing,”
and when you search for any of those terms, the corresponding document is included in the
results.

The same analysis process applies when you search, as illustrated in figure 1.4. If you
enter “bicycle race,” you probably don’t want to search for only the exact match. Maybe a
document that contains both those words somewhere will do.

The default analyzer first breaks text into words by looking for common word separators,
such as a space or a comma. Then, it lowercases those words, so that “Bicycle Race”
generates “bicycle” and “race.” We talk more about analysis in chapter 5.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

11

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://solrinaction.com/
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 1.4 Analysis breaks text into words, both when you’re indexing and searching.

At this point you might want to know more about what’s in that “indexed data” box shown in
figure 1.4 because it sounds quite vague. As we’ll discuss next, data is organized in
documents. By default, Elasticsearch stores your documents as they are, and it also puts all
the terms resulting from analysis into the inverted index to enable the all-important fast and
relevant searches. We go into more detail about indexing and storing data in chapter 3.

1.3.3 Structuring your data in Elasticsearch
Unlike a relational database, which stores data in records or rows, Elasticsearch stores data in
documents. Yet, to some extent, the two concepts are similar. With a table, you have
columns, and for each column, each row has a value. With a document you have keys and
values, in much the same way.

The difference is that a document is more flexible than a record mainly because, in
Elasticsearch at least, a document can be hierarchical. For example, the same way you
associate a key with a string value, such as “author”:”Joe,” a document can have an array of
strings, such as “tags”:[”cycling”, “bicycles”], or even key-value pairs, such as
“author”:{“first_name”:”Joe”, “last_name”:”Smith”}.

This flexibility is important because it encourages you to keep all the data that belongs to a
logical entity in the same document as opposed to keeping it in different rows in different
tables. For example, the easiest(and probably fastest) way of storing blog articles is to keep
all the data that belongs to a post in the same document. This way, searches are fast because
you don’t need joins or any other relational work.

If you have an SQL background, you might miss the ability to use joins. Unfortunately,
they’re not supported, at least in version 1.0, because it’s difficult to do complex relational
work in a distributed environment. When data goes back and forth between many nodes, the
query time increases dramatically.

You can define relationships in Elasticsearch (we explore these in chapter 7), and although
this functionality is limited compared to what you’d expect in a relational database, it can still
prove useful. For example, if you index access logs from your HTTP server, you can define a
relationship between each log and the blog post that was accessed. This way, you can let
users search for blog posts that match certain criteria and show the most accessed first.

But how would this data be organized? Suppose you have two blogs: one about cycling and
one about elections, and you put all the posts of each particular blog in its own index (see

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

12

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

figure 1.5). An index is much like a database in the sense that it can have its own completely
different settings, such as the way it’s stored on disk or whether it’s read-only. Indices are
stored on disk in different sets of files, making them physically separated, although you can
search across multiple indices in the same way you search one index.

Figure 1.5 Data organized in multiple indices

Inside each index, each document goes into a type. The purpose of types is to logically
separate different kinds of documents. In this case, let’s assume you have blog posts and
access logs. Figure 1.6shows the two types defined in each index.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

13

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A – to the right of logs (Logs can have only one parent)
#B – to the left of type (Posts can have many children)

Figure 1.6 Types provide logical separation in the same index.

Types are also used to specify relationships between documents as well. You can define a
one-to-many relationship between documents of one type, and documents of another, which
we cover in chapter 7. In this case, “posts” are the parent of “logs” because each post can
have many corresponding access logs (children), but an access log can only hit one post
(parent). The resulting data structure is illustrated in figure 1.7.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

14

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 1.7 Data organized in indices and types

Next, let’s look at how this data organization is stored on your physical servers running
Elasticsearch. Because it’s distributed, your data can be spread on multiple such servers,
which form a cluster.

1.4 Performance and scaling
Performance is often the main reason you want a search engine. If you have large amounts of
data, you need to be able to index it quickly and get results from your searches quickly. If you
have many users, you need your search engine to support many concurrent searches.

Elasticsearch provides several tuning options to make indexing operations fast, from
sending many operations in the same bulk request, to changing the way your data is stored on
disk. Searches can also be tuned for speed; for example, some search types are faster than
others, depending on the use case. We show you how to make your indexing and searching
faster in chapter 10.

As your data grows, an important feature is the ability to split your data across multiple
servers, also known as sharding. Fortunately, Elasticsearch is sharded by default, as you’ll
come to understand, which makes it easy to spread your data across a cluster of multiple
instances. You can also store multiple copies of the same data on multiple machines, which is
good for availability.

Another feature, which is useful when you have multiple instances, is the ability to change
the configuration on the fly through the REST API. The same API that you use for indexing and

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

15

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

searching can be used to modify most configuration options. Those changes can apply to all
nodes of a cluster, when you’re running a single command.

SCALING, SHARDING, AND PERFORMANCE
A cluster is made up of one or more nodes, where each node is an Elasticsearch process that
typically runs on a separate server. Elasticsearch is clustered by default: when you start your
first process, you have a cluster of one node, which you can expand without making any
configuration changes.

This configuration works because Elasticsearch divides every index into multiple chunks
called shards. By default, each index has five shards. In the blog example, when you start
your first node and index your first blog posts, your one-node cluster works as illustrated in
figure 1.8.

Figure 1.8 One-node cluster with one index divided into five shards

“How does this help?” you might ask. If you stay on one node forever, it doesn’t—you might
as well have only one shard. But if you add new nodes to your cluster, Elasticsearch can move
shards from your initial node to the new ones. Figure 1.9 shows how a three-node cluster
might look with your initial five shards spread across the available nodes.
Spreading out the indexing and searching load across multiple machines gives you more
performance and capacity. Each node can receive all kinds of requests, so, from the
application’s point of view, talking to any node is the same as talking to the single entity that
is your Elasticsearch cluster.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

16

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 1.9 Five shards spread across a three-node cluster

Shards can be moved around, allowing you to expand or shrink your cluster at any time.
By default, Elasticsearch tries to balance the number of shards across your nodes so the load
is evenly spread.

The problem with the setup in figure 1.9 is that if a node goes down, part of your data
becomes unavailable. To increase availability, you can create one or more copies (called
replicas) for each of your initial shards (called primaries).

Primaries differ from replicas in that they’re the first to receive new documents. Other than
that, they’re the same: both index the same documents eventually, and both can serve
searches. This helps in two ways:

• Because searches also run on replicas, you can increase the number of concurrent
searches you serve by adding more nodes and replicas to your cluster.

• Replicas and primary shards index documents in the same way, and replicas can be
promoted to primaries. That’s exactly what Elasticsearch does in the event that a node
hosting a primary shard goes down.

The number of replicas per shard can be changed on the fly. Figure 1.10 shows the cluster
from figure 1.9 with one replica added for each shard.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

17

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 1.10 The three-node cluster with a set of replicas

With this cluster, if a node goes down, you still have a complete set of shards because of the
replicas. From the application’s point of view, the cluster continues to work as expected. In the
background, Elasticsearch automatically promotes the needed replicas to primaries, and
creates additional replicas to get back to the configuration you requested. You’ll learn more
about this process in chapter 9, which is all about scaling.

At this point, we bet you’re eager to install Elasticsearch and start exploring all this
functionality. In the next section, you’ll install Elasticsearch and its requirements, and then run
your first request through its HTTP API.

1.5 Getting started with Elasticsearch
To install your own single-server Elasticsearch cluster, you need to have at least Java 6
installed. Once that’s in place, you’re typically only a download away from getting
Elasticsearch ready to start.

1.5.1 Installing Java
If you don’t have a Java Runtime Environment (JRE) already, you’ll have to install it first. Any
JRE should work, but typically you install the one from Oracle
(https://www.java.com/en/download/index.jsp) or the open-source implementation, OpenJDK
(http://download.java.net/openjdk/).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

18

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://www.java.com/en/download/index.jsp
http://download.java.net/openjdk/
http://www.manning-sandbox.com/forum.jspa?forumID=871

Troubleshooting “no Java found” errors
With Elasticsearch, as with other Java applications, it might happen that you’ve downloaded and
installed Java, but the application refuses to start, complaining that it can’t find Java.
Elasticsearch’s script looks for Java in two places: the JAVA_HOME environment variable and the
system path.
To check if it’s in JAVA_HOME, use the env command on UNIX-like systems and the set command on
Windows.
To check if it’s in the system path, run the following command:

% java -version

If it works, then Java is in your path. If it doesn’t, either configure JAVA_HOME, or add the Java
binary to your path. The Java binary is typically found wherever you installed Java (which should be
JAVA_HOME), in the bin directory.

1.5.2 Downloading and starting Elasticsearch
With Java set up, you need to get Elasticsearch and start it. Download the package that best
fits your environment. The following package options are available from
www.elasticsearch.org/download/: Tar, Zip, RPM, and DEB.

ANY UNIX-LIKE OPERATING SYSTEM
If you’re running on Linux, Mac, or any other UNIX-like operating system, you can get
Elasticsearch from the tar.gz package. Then, you can unpack it and start Elasticsearch with
the shell script from the archive:

% tar zxf elasticsearch-*.tar.gz
% cd elasticsearch-*
% bin/elasticsearch

MAKING ELASTICSEARCH A SYSTEM SERVICE
In production, you probably want to run Elasticsearch as a service instead of starting it
manually. To do that, you need to install the service wrapper, which is available on GitHub. To
download it, run the following command:

% git clone https://github.com/elasticsearch/elasticsearch-servicewrapper.git

Then copy the service/ directory in the bin/ directory of your Elasticsearch installation:

% cp -r elasticsearch-servicewrapper/service/ bin/

Finally, you’ll have your init script as a symbolic link to the “elasticsearch” service wrapper
script:

% ln -s `pwd`/bin/service/elasticsearch /etc/init.d/elasticsearch

Now you’re done! To restart Elasticsearch, run the following command:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

19

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.elasticsearch.org/download/:
https://github.com/elasticsearch/elasticsearch-servicewrapper.git
http://www.manning-sandbox.com/forum.jspa?forumID=871

/etc/init.d/elasticsearch restart

HOMEBREW PACKAGE MANAGER FOR OS X
If you need an easier way to install Elasticsearch on your Mac, you can install Homebrew.
Instructions for doing that can be found at http://brew.sh. With Homebrew installed, getting
Elasticsearch is a matter of running the following command:

% brew install elasticsearch

Then you start it in a similar way to the tar.gz archive:

% elasticsearch

ZIP PACKAGE
If you’re running on Windows, download the ZIP archive. Unpack it, then run elasticsearch.bat
from the bin/ directory, much as you run Elasticsearch on UNIX:

% bin\elasticsearch.bat

RPM PACKAGE
If you’re running on Red Hat Linux, CentOS, SUSE, or anything else that works with RPMs, get
the RPM package, and then install it with the following command:

% rpm -Uvh elasticsearch-*.noarch.rpm

And that’s it! Elasticsearch is installed and started. Restart it the same way as any other
service. For example:

% systemctl restart elasticsearch.service

DEB PACKAGE
If you’re running on Debian, Ubuntu, or anything else that works with DEBs, download the
DEB package, and then install it with the following command:

% dpkg -i elasticsearch-*.deb

And again, that’s it! If you need to restart it, you can use the init script:

% /etc/init.d/elasticsearch restart

If you want to see what Elasticsearch is doing, look up the logs in /var/log/elasticsearch/. This
is the same for the RPM package.

1.5.3 Verifying that it works
Now that you have Elasticsearch installed and started, let’s take a look at the logs generated
during startup and connect to the REST API for the first time.

EXAMINING THE STARTUP LOGS
When you first run Elasticsearch, you see a series of log lines telling you what’s going on. Let’s
take a look at some of those lines and what they mean.
The first line typically provides statistics about the node you started:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

20

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://brew.sh
http://www.manning-sandbox.com/forum.jspa?forumID=871

[node] [Basilisk] version[1.1.0], pid[6011], build[77bc5d5/2013-11-06T14:40:44Z]

By default, Elasticsearch gives your node a random name, in this case Basilisk, which you can
modify from the configuration. You can see details on the particular version you’re running,
along with the PID of the Java process that started.

[plugins] [Basilisk] loaded [], sites []

For more information about plugins, see appendix B.

[transport] [Basilisk] bound_address {inet[/0.0.0.0:9300]}, publish_address
{inet[/192.168.1.8:9300]}

If you use the native Java API instead of the HTTP API, this is the point where you need to
connect.

In the next line, a master node was elected and it’s the node you started named Basilisk:

[cluster.service] [Basilisk] new_master [Basilisk][YPHC_vWiQVuSX-
ZIJIlMhg][inet[/192.168.1.8:9300]], reason: zen-disco-join
(elected_as_master)

We discuss master election in chapter 9, which covers scaling out. The basic idea is that
each cluster has a master node, responsible for knowing which nodes are in the cluster and
where all the shards are located. Each time the master is unavailable, a new one is elected. In
this case, you started the first node in the cluster, so this is your master.

Port 9200 is used for HTTP communication by default. This is where applications using the
REST API connect:

[http] [Basilisk] bound_address {inet[/0.0.0.0:9200]}, publish_address
{inet[/192.168.1.8:9200]}

The next line indicates that your node is now started:

[node] [Basilisk] started

At this point, you can connect to it and start issuing requests.
Gateway is the component of Elasticsearch responsible for persisting your data to disk so

you don’t lose it if the node goes down:

[gateway] [Basilisk] recovered [0] indices into cluster_state

When you start your node, Gateway looks on the disk to see if any data is saved so it can
restore it. In this case, there’s no index to restore.

Much of the information we’ve looked at in these log lines is configurable from the node
name to the Gateway settings. We talk about configuration options, and the concepts around
them, as the book progresses. You can expect such configuration options to appear in part 3,
which is all about performance and administration. Until then, you won’t need to configure
much because the default values are developer-friendly.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

21

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

USING THE REST API
The easiest way to connect to the REST API is by pointing your browser to
http://localhost:9200. If you didn’t install Elasticsearch on your local machine, replace
localhost with the IP address of the remote machine. By default, Elasticsearch listens for
incoming HTTP requests on port 9200 of all interfaces. If the request works, you should get a
JSON reply, as shown in figure 1.11.

Figure 1.11 Checking out Elasticsearch from your browser

Let’s look at each field of the JSON and see what it’s about:

• Status—Displays the HTTP error code that resulted from the request; 200 means OK.
• Name—Displays the name of your Elasticsearch instance, which you can also see from

the logs.
• Version—Contains an object that demonstrates the hierarchical nature of documents,

which we discussed previously. The object includes a number of fields that tell you
about the installed version: the version number, its hash, the time it was built, whether
it’s an official release or a build from a snapshot of a branch from GitHub, and the
underlying Lucene version.

• Tagline—Displays the first tagline of Elasticsearch, “You Know, for Search.”

1.6 Summary
Now that you’re all set up, let’s review what we explored in this chapter.

• Elasticsearch is an open-source, distributed search engine built on top of Apache
Lucene.

• The typical use case for Elasticsearch is to index large amounts of data so you can run
full-text searches and real-time statistics on it.

• Elasticsearch provides features that go well beyond full-text search, for example, you
can tune the relevance of your searches and offer search suggestions.

• To get started, download the package, unpack it if necessary, and run the Elasticsearch

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

22

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://localhost:9200
http://www.manning-sandbox.com/forum.jspa?forumID=871

start script.
• For indexing and searching data, as well as for managing your cluster’s settings, use

the JSON over HTTP API and get back a JSON reply.
• You can also look at Elasticsearch as a NoSQL data store with real-time search and

analytics capabilities. It’s document-oriented and scalable by default.
• Elasticsearch automatically divides data into shards, which get balanced across the

available servers in your cluster. This makes it easy to add and remove servers on the
fly. Shards are also replicated, making your cluster fault-tolerant.

In chapter chapter 2, you’ll get to know Elasticsearch even better by indexing and searching
real data.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

23

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

2
Diving into the functionality

This chapter covers

• Defining documents, mapping types, and indices
• Understanding Elasticsearch nodes and primary and replica shards
• Indexing documents with curl and a data set
• Searching and retrieving data
• Setting Elasticsearch configuration options
• Working with multiple nodes

Now you know what kind of search engine Elasticsearch is, and you’ve seen some of its main
features in chapter 1. Let’s switch to the practical side and see how it does what it’s good at.
Imagine you’re tasked with creating a way to search through millions of documents, like a
website that allows people to build common interest groups and get together. You need to
implement this in a fault-tolerant way, and you need your setup to be able to accommodate
more data and more concurrent searches, as your get-together site becomes more successful.

In this chapter, we’ll show you how to deal with such a scenario, by explaining how
Elasticsearch data is organized. Then, you’ll get practical and start indexing and searching
some real data for a get-together website using the code samples provided for this chapter.
We’ll revisit this data and example throughout the book, as we explore working with data in
Elasticsearch. All operations will be done using cURL, a nice little command-line tool for HTTP
requests. Later, you can translate what cURL does into your preferred programming language
if you need to. Toward the end of the chapter, you’ll make some configuration changes and
start new instances of Elasticsearch, so you can experiment with a cluster of multiple nodes.

We’ll get started with data organization. To understand how data is organized in
Elasticsearch, we’ll look at it from two angles:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

24

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Logical layout—What your search application needs to be aware of

The unit you’ll use for indexing and searching is a document, and you can think of it like
a row in a relational database. Documents are grouped into mapping types, sometimes
called types, which contain documents in a similar way to how tables contain rows.
Finally, one or multiple types live in an index, the biggest container, similar to a
database in the SQL world.

• Physical layout—How Elasticsearch handles your data in the background

Elasticsearch divides each index into shards, which can migrate between servers that
make up a cluster. Typically, applications don’t care about this because they work with
Elasticsearch in much the same way, whether it’s one or more servers. But when you’re
administering the cluster, you care because the way you configure the physical layout
determines its performance, scalability, and availability.

Figure 2.1 illustrates the two perspectives:

Figure 2.1 An Elasticsearch cluster from the application’s and administrator’s points of view

2.1 Understanding the logical layout: documents, types, and
indices

When you index a document in Elasticsearch, you put it in a type that belongs to a specific
index. You can see this idea in figure 2.2, where the get-together index contains two types:
event and group. Those types contain documents, such as the one labeled “1.” The label “1” is
that document’s ID. The index-type-ID combination uniquely identifies a document in your
Elasticsearch setup. When you search, you can look for documents in that specific type, of that
specific index, or you can search across multiple types or even multiple indices.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

25

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A (Add arrow to the left of /get-together/event/1) Index name + type name + document id = uniquely

identified document

Figure 2.2 Logical layout of data in Elasticsearch: how an application sees data

At this point you might be asking: what exactly is a document, type, and an index? That’s
exactly what we’re going to discuss next.

2.1.1 Documents
We said in chapter 1 that Elasticsearch is document-oriented, where a document is that
smallest unit of data you index or search for. There are a few important properties of a
document in Elasticsearch:

• It’s self-contained. A document contains both the fields (name) and their values
(Elasticsearch Denver).

• It can be hierarchical. Think of this as documents within documents. A value of a field
can be simple, like the value of the location field can be a string. It can also contain
other fields and values. For example, the location field might contain both a city and a
street-address within it.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

26

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• It has a flexible structure. Your documents don’t depend on a predefined schema. For
example, not all events need description values, so that field can be omitted altogether.
But it might bring new fields, like the latitude and longitude of the location.

A document is normally be a JSON representation of your data. As we discussed in chapter
1, JSON over HTTP is the most widely used way to communicate with Elasticsearch, and it’s
the method we use throughout the book. For example, an event in your get-together site can
be represented in the following document:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "location": "Denver, Colorado, USA"
}

NOTE Throughout the book, we’ll use different colors for the field names and values of the JSON
documents, to make them easier to read. Field names are darker/blue, and values are in
lighter/red.

You can also imagine a table with three columns: name, organizer, and location. The
document would be a row containing the values. But there are some differences that make
this comparison inexact.

The main difference between documents like this and rows in a table is that a single
document contains the names of all the fields it has a value for. So, although it uses up more
space in its raw form, you can easily understand which value belongs to which field by looking
at one document.

Another difference is that, unlike rows, documents can be hierarchical. For example, the
location can contain a name and a geo-location:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "location": {
 "name": "Denver, Colorado, USA",
 "geolocation": "39.7392, -104.9847"
 }
}

A single document can also contain arrays of values. For example:

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "members": ["Lee", "Mike"]
}

Finally, documents in Elasticsearch are said to be schema-free, in the sense that not all
your documents need to have the same fields, so they’re not bound to the same schema. For
example, you can omit the location altogether, in case the organizer needs to be called before
every gathering:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

27

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

{
 "name": "Elasticsearch Denver",
 "organizer": "Lee",
 "members": ["Lee", "Mike"]
}

Although you can add or omit fields at will, the type of each fields matters: some are
strings, some are integers, and so on. Because of that, Elasticsearch keeps a mapping of all
your fields and their types, and other settings. This mapping is specific to every type of every
index. That’s why types are also called mapping types in Elasticsearch terminology.

2.1.2 Mapping types
Mapping types are logical containers for documents, similar to how tables are containers for
rows. They’re often called simply types, because you’d put different types of documents in
different mapping types.

For example, you can have a type that defines the get-together groups, and a type for the
events when people gather. These could be different types of documents because they’d have
different structures.

We call them mapping types because they’re typically used as containers for different
types of documents—documents with different structures. The definition of fields in each type
is called a mapping. For example, name would be mapped as a string, but the geolocation field
under location would be mapped as a special geo_point type. (We explore working with
geospatial data in appendix A). Each kind of fields is handled differently. For example, you
search for a word in the name field, and you search for groups that are located near where
you live.

TIP Whenever you’re searching in a field that isn’t at the root of your JSON document, you must
specify its path. For example, the geolocation field under location is referred to as
location.geolocation.

You may ask yourself: If Elasticsearch is schema-free, why does each document belong to
a type, and each type contains a mapping, which is like a schema?

We say schema-free because documents are not bound to the schema. They aren't
required to contain all the fields defined in your mapping and may come up with new fields.
How does it work? First, the mapping contains all the fields of all the documents indexed so far
in that type. But not all documents have to have all fields. Also, if a new document gets
indexed with a field that’s not already in the mapping, Elasticsearch automatically adds that
new field to your mapping. To add that field, it has to decide what type it is, so it guesses it.
For example, if the value is 7, it assumes it’s a long type.

This autodetection of new fields has its downside because Elasticsearch might not guess
right. For example, after indexing 7, you might want to index 7.5, which will fail because it’s a
float and not a long. In production, the safe way to go is to define your mapping before
indexing data. We talk more about defining mappings in chapter 3.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

28

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Mapping types only divide documents logically. Physically, documents from the same index
are written to disk regardless of the mapping type they belong to.

2.1.3 Indices
Indices are containers for mapping types. An Elasticsearch index is an independent chunk of
documents, much like a database is in the relational world: each index is stored on the disk in
the same set of files; it stores all the fields from all the mapping types in there, and it has its
own settings.

For example, each index has a setting called refresh_interval, which defines the interval
at which newly indexed documents are made available for searches. This refresh operation is
quite expensive in terms of performance, and this is why it’s done occasionally—by default,
every second—instead of doing it after each indexed document. If you’ve read that
Elasticsearch is near-real-time, this refresh process is what it refers to. Even though you can
refresh after each new document, it’s not worth it for many use cases. We talk more about
indexing performance in chapter 10.

A nice feature of Elasticsearch is that you can search across indices like you can search
across mapping types. This gives you flexibility in terms of how you can organize your
documents. For example, you can put your get-together events and the blog posts about them
in different indices or in different types of the same index. Because Elasticsearch is schema-
free, you can even put them in the same type. You can organize your documents in various
ways, but some ways are more efficient than others, depending on your use case. We talk
more about how to organize your data for efficient indexing in chapter 4.

Elasticsearch index vs. Lucene index
You’ll see the word “index” used frequently as we discuss Elasticsearch; here’s how the terminology
works.

An Elasticsearch index is broken down into chunks: shards. A shard is a Lucene index. So an
Elasticsearch index is made up of multiple Lucene indices. This makes sense because Elasticsearch
uses Apache Lucene as its core library to index your data and search through it.

Throughout this book, whenever you see the word “index” by itself, it refers an Elasticsearch
index. If we’re digging into the details of what’s in a shard, we’ll specifically use the term “Lucene
index.”

Another index-specific setting is the number of shards. You saw in chapter 1 that an index can
be made up of one or more chunks called shards. This is good for scalability: you can run
Elasticsearch on multiple servers and have shards of the same index live on multiple servers.

From a search or an indexing application’s point of view, the way you shard your index
doesn’t matter in terms of how data is organized logically. It’s about how your data is
physically laid out, and we’ll look at that next.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

29

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

2.2 Understanding the physical layout: nodes and shards
Understanding how data is physically laid out boils down to understanding how Elasticsearch
scales. In this section, we’ll explain how scaling works by looking at how multiple nodes work
together in a cluster, how data is divided in shards and replicated, and how indexing and
searching works with multiple shards and replicas.

To understand the big picture, let’s review what happens when an Elasticsearch index is
created. By default, each index is made up of five primary shards, each with one replica, for a
total of ten shards. Each shard is a part of your index, so roughly 20% of your data is found
on each shard. Those five primary shards are replicated into five more shards, as illustrated in
figure 2.3.

#A Arrow from the left to Node1: A node is an instance of Elasticsearch
#B Arrow from the top to primary shard 2 of Node 2: A primary shard is a chunk of your index
#C Arrow from the right to replica 2 of Node 3: A replica is a copy of a primary shard

Figure 2.3 A three-node cluster with an index divided into five shards, with one replica per shard

As we’ll explore next, replicas are good for reliability and search performance. Technically,
a shard is a directory of files where Lucene stores the data for your index. A shard is also the
smallest unit that Elasticsearch moves from node to node.

2.2.1 Creating a cluster of one or more nodes
A node is an instance of Elasticsearch. When you start Elasticsearch on your server, you have
a node. If you start Elasticsearch on another server, it’s another node. You can even have
more nodes on the same server, by starting multiple Elasticsearch processes.

Multiple nodes can join the same cluster. With a cluster of multiple nodes, the same data
can be spread across multiple servers. This helps performance because Elasticsearch has more
resources to work with. It also helps reliability: if you have at least one replica per shard, any
node can disappear, and Elasticsearch will still serve you all the data. For an application that’s

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

30

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

using Elasticsearch, having one or more nodes in a cluster is transparent. Applications
typically care only about documents, types and indices, not shards and nodes.

Nodes in a cluster are like dancers in a show
You might prefer skaters, or actors, or any other type of performer. Either way, the same way you
can have one or more dancers in a show, you can have one or more nodes in a cluster.
Similar to shows, the minute you add a second node in a cluster, you need to make sure that they
can communicate to each other. Only then can they share the work. The same way a show remains
a single show, designed to entertain the viewer, a cluster remains a cluster, designed to serve the
same piece of data.

With Elasticsearch, you typically start with one node so you can test your application and add
more nodes as your data grows and you need more performance. We take a deeper look at how you
can add nodes to your cluster in chapter 9.

WHAT HAPPENS WHEN YOU INDEX A DOCUMENT?
By default, when you index a document, it’s first sent to one of the primary shards, which is
chosen based on a hash of the document’s ID. Then, the document is sent to be indexed in all
of that primary shard’s replicas (see left side of figure 2.4). This keeps replicas in sync with
data from the primary shards. Being in sync allows replicas to serve searches and to be
automatically promoted to primary shards in case the original primary becomes unavailable.

Figure 2.4 Documents are indexed to random primary shards and their replicas. Searches run on complete
sets of shards, regardless of their status as primaries or replicas.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

31

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

WHAT HAPPENS WHEN YOU SEARCH AN INDEX?
When you search an index, Elasticsearch has to look in a complete set of shards for that index
(see right side of figure 2.4). Those shards can be either primary or replicas because primary
and replica shards typically contain the same documents. Elasticsearch distributes the search
load between the primary and replica shards of the index you’re searching, making replicas
useful for both search performance and fault tolerance.

Next, we’ll look at the details of what primary and replica shards are and how they’re
allocated in an Elasticsearch cluster.

2.2.2 Understanding primary and replica shards
Let’s start with the smallest unit Elasticsearch deals with, a shard. A shard is a Lucene index:
a directory of files containing an inverted index. An inverted index is a structure that enables
Elasticsearch to tell you which document contains a term (a word) without having to look at all
the documents.

In Figure 2.5, you can see what sort of information the first primary shard of your get-
together index may contain. The shard get-together0, as we’ll call it from now on, is a Lucene
index—an inverted index. By default, it stores the original document’s content plus additional
information, such as term dictionary and term frequencies, which helps searching.

The term dictionary maps each term to identifiers of documents containing that term (see
figure 2.5). When searching, Elasticsearch doesn’t have to look through all the documents for
that term—it uses this dictionary to quickly identify all the documents that match.

Term frequencies give Elasticsearch quick access to the number of appearances of a term
in a document. This is important for calculating the relevancy score of results. For example, if
you search for “denver”, documents that contain “denver” many times are typically more
relevant. Elasticsearch gives them a higher score, and they appear higher in the list of results.

Arrow from the top to the black title: A shard is a Lucene index

Figure 2.5 Term dictionary and frequencies in a Lucene index

A shard can be either a primary or a replica shard, with replicas being exactly that–copies
of the primary shard. A replica is used for searching, or it becomes a new primary shard if the
original primary shard is lost.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

32

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

An Elasticsearch index is made up of one or more primary shards and zero or more replica
shards. In Figure 2.6, you can see that the Elasticsearch get-together index is made up of six
total shards: two primary shards (darker boxes), and two replicas for each shard (lighter
boxes) for a total of four replicas.

Figure 2.6 Multiple primary and replica shards make up the get-together index

NOTE You can change the number of replicas per shard at any time because replicas can always
be created or removed. This doesn’t apply to the number of primary shards an index is divided
into: you have to decide on the number of shards before creating the index. Keep in mind that
too few shards limit how much you can scale, and too many shards impact performance. The
default setting of five is typically a good start, and we expand the subject in chapter 9, which is
all about scaling.

All the shards and replicas you’ve seen so far are distributed to nodes within an
Elasticsearch cluster. Next, we’ll look at some details about how Elasticsearch distributes
shards and replicas in a cluster having one or more nodes.

2.2.3 Distributing shards in a cluster
The simplest Elasticsearch cluster is one having one node: one machine running one
Elasticsearch process. When you first installed Elasticsearch in chapter 1 and started it, you
created a one-node cluster.

As you add more nodes to the same cluster, the existing shards get balanced between all
the nodes. As a result, both indexing and search requests that work with those shards benefit
from the extra power of your added nodes. Scaling this way (by adding nodes to a cluster) is
called horizontal scaling; you add more nodes, and requests are then distributed so they all
share the work.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

33

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The alternative to horizontal scaling is to scale vertically; you add more resources to your
Elasticsearch node, perhaps by dedicating more processors to it if it’s a virtual machine, or
adding RAM to a physical machine. Although vertical scaling helps performance almost every
time, it’s not always possible or cost-effective. Using shards enables you to scale horizontally.

Suppose you want to scale your get-together index, which currently has two shards and
no replicas. The first option is to scale vertically by upgrading the node: for example, adding
more RAM, more CPUs, faster disks and so on. The second option is to scale horizontally by
adding another node and having your data distributed between the two nodes.

Figure 2.7 To improve performance, scale vertically (top left) or scale horizontally (lower right).

We discuss more about performance in chapter 10. For now, let’s see how indexing and
searching work across multiple shards and replicas.

2.2.4 Distributed indexing and searching
At this point you might wonder how indexing and searching works with multiple shards spread
across multiple nodes.

Let’s take indexing, as shown in figure 2.8. The Elasticsearch node that receives your
indexing request first selects the shard to index the document to. By default, documents are
distributed evenly between shards5.

Once the target shard is determined, the current node forwards the document to the node
holding that shard. Subsequently, that indexing operation is replayed by all the replicas of that

5 By default, for each document, the shard is determined by hashing its ID string. Each shard has an equal chunk of the total
hash range and receives, in normal conditions, an equal chunk of documents.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

34

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

shard. The indexing command successfully returns after all the available replicas finish
indexing the document.

Figure 2.8 Indexing operation is forwarded to the responsible shard, and then to its replicas

With searching, the node that receives the request forwards it to a set of shards containing
all your data, it doesn’t matter if those shards are primaries or replicas. Elasticsearch uses a
round-robin format to forward the request to the cluster’s nodes and shards. As shown in
figure 2.9, Elasticsearch then gathers results from those shards, aggregates them into a single
reply, and forwards the reply back to the client application.

Figure 2.9 Search request is forwarded to shards/replicas containing a complete set of data. Then,
results are aggregated and sent back to the client.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

35

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Given that requests are sent to primary shards and replicas in round-robin fashion,
Elasticsearch assumes that all nodes in your cluster are equally fast. You typically achieve this
with identical hardware and software configurations. If that’s not the case, you can organize
your data or configure your shards to prevent the slower nodes from becoming a bottleneck.
We explore more about such options in chapter 9. For now, let’s start indexing documents in
the single-node Elasticsearch cluster that you started in chapter 1.

2.3 Indexing new data
Although chapter 3 gets into the details of indexing, here the goal is to give you a feel for
what indexing is about. In this section, we’ll discuss the following processes:

• Indexing a document with cURL. To send your first document, you’ll use the HTTP API
to send a JSON document to be indexed with Elasticsearch. Then, we’ll have a look at
the JSON reply that comes back.

• Looking at how Elasticsearch automatically creates the index and type to which your
document belongs if they don’t exist already.

• Running a script to index additional documents. You’ll run the code samples for this
chapter to quickly index additional files. This way, you have a bunch of documents
ready to search through.

You’ll index your first document by hand, so let’s start by looking at how to issue an HTTP
PUT request to a URI. A sample URI shown in figure 2.10 with each part labeled.

Figure 2.10 URI of a document in Elasticsearch

Let’s walk through how you issue the request.

2.3.1 Indexing a document with cURL
For most snippets in this book we’ll use the cURL binary. cURL is a command-line tool for
transferring data over HTTP. You’ll use the curl command to make HTTP requests, as it has
become a convention to use cURL for Elasticsearch code snippets. That’s because it’s easy to
translate a cURL example into any programming language. In fact, if you ask for help on the
official mailing list for Elasticsearch, it’s recommended that you provide a curl re-creation of
your problem. A curl re-creation is a command or a sequence of curl commands that

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

36

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

reproduces the problem you’re experiencing, and anyone who has Elasticsearch installed
locally can run it.

Installing cURL
If you’re running on a UNIX-like operating system, like Linux or Mac OS X, then you’re likely to have
the curl command available. If you don’t have it already, or if you’re on Windows, you can
download it from http://curl.haxx.se/. You can also install Cygwin, and then select cURL as part of
the Cygwin installation, which is the approach we recommend.

Using Cygwin to run curl commands on Windows is preferred because you can copy-paste the
commands that work on UNIX-like systems. If you choose to stick with the Windows shell, take extra
care because single quotes behave differently on Windows. In most situations, you must replace
single quotes (') with double-quotes (") and escape double quotes with a backslash (\"). For
example, a UNIX command like this
curl 'http://localhost' -d '{"field": "value"}'

looks like this on Windows
curl "http://localhost" -d "{\"field\": \"value\"}"

Assuming you can use the curl command and you have Elasticsearch installed with the
defaults settings on your local machine, you can index your first CD document with the
following command:

% curl -XPUT 'localhost:9200/get-together/group/1?pretty' -d '{
 "name": "Elasticsearch Denver",
 "organizer": "Lee"
}'

You should get the following output:

{
 "ok" : true,
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "created" : true
}

The reply tells you whether the request succeeded or failed. If it worked, you should get
back the index, type, and ID of the indexed document. In this case, you get the ones you
specified, but it’s also possible to rely on Elasticsearch to generate IDs, as you’ll learn in
chapter 3. You also get the version of the document, which begins at 1 and is incremented
with each update. You’ll learn all about updates in chapter 3.
There are many ways to use curl to make HTTP requests; run man curl to see all of them.
Throughout this book, we use the following curl usage conventions:

• The method, which is typically GET, PUT or POST, is the argument of the -X parameter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

37

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://curl.haxx.se/
http://localhost
http://localhost
http://www.manning-sandbox.com/forum.jspa?forumID=871

You can add a space between the parameter and its argument, but we don’t add one.
For example, we use -XPUT instead of -X PUT. The default method is GET, and when we
use it, we skip the -X parameter altogether.

• In the URI, we skip specifying the protocol; it’s always http, and curl uses http by
default when no protocol is specified.

• We put single quotes around the URI because it can contain multiple parameters, and
you have to separate the parameters with an ampersand (&), which normally sends the
process to the background.

• True values of Boolean parameters can be expressed as pretty=true or simply
pretty.

We use the latter. The pretty parameter in particular makes the JSON reply look more
readable than the default, which is to return the reply all in one line.

• The data that we send through HTTP is typically JSON, and we surround it with single
quotes because the JSON itself contains double quotes.

If single quotes are needed in the JSON itself, we first close the single quotes, and then
surround the needed single quote with double quotes as shown in this example:

'{"name": "Scarlet O'"'"'Hara"}'

Using Elasticsearch from your browser via Head, kopf or Marvel
If you prefer graphical interfaces to the command line, several tools are available.
Elasticsearch Head—You can install this tool as an Elasticsearch plugin, a standalone HTTP server, or
a web page that you can open from your file system. You can send HTTP requests from there, but
Head is most useful as a monitoring tool to show you how shards are distributed in your cluster. You
can find Elasticsearch Head at https://github.com/mobz/elasticsearch-head.

Elasticsearch kopf—Similar to Head in that it’s good for both monitoring and sending requests,
this tool runs as a web page from your file system or as an Elasticsearch plugin. Both Head and kopf
evolve quickly, so any comparison might become obsolete quickly as well. You can find Elasticsearch
kopf at https://github.com/lmenezes/elasticsearch-kopf.

Marvel—This tool is a monitoring solution for Elasticsearch. We discuss more about monitoring in
chapter 11, which is all about administering your cluster. For now, the thing to remember is that
Marvel also provides a graphical way to send requests to Elasticsearch, and it provides an
autocomplete feature, which is a useful learning aid. You can download Marvel at
http://www.elasticsearch.org/overview/marvel/download/.

2.3.2 Creating an index and mapping type
If you installed Elasticsearch and ran the curl command to index a document, you might be
wondering why it worked given the following factors:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

38

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/mobz/elasticsearch-head
https://github.com/lmenezes/elasticsearch-kopf
http://www.elasticsearch.org/overview/marvel/download/
http://www.manning-sandbox.com/forum.jspa?forumID=871

• The index wasn’t there before. You didn’t issue any command to create an index named
get-together.

• The mapping wasn’t previously defined. You didn’t define any mapping type called
group in which to define the fields from your document.

The curl command works because Elasticsearch automatically adds the get-together index
for you and also creates a new mapping for the type group. That mapping contains a definition
of your field as strings. Elasticsearch handles all this for you by default, which enables you to
start indexing without any prior configuration. You can change this default behavior if you
need to as you’ll explore in chapter 3.

CREATING AN INDEX MANUALLY
You can always create an index with a PUT request similar to the request used to index a
document:

% curl -XPUT 'localhost:9200/get-together?pretty'
{
 "acknowledged" : true
}

Creating the index itself takes more time than creating a document, so you might want to
have the index ready beforehand. Another reason to create indices in advance is if you want to
specify different settings than the ones Elasticsearch defaults to, for example, you may want a
specific number of shards.

VIEWING THE MAPPING TYPE
As we mentioned, the mapping is automatically created with your new document, and it
automatically detects your name and organizer fields as strings. If you add a new document
with yet another new field, Elasticsearch guesses its type, too and appends the new field to
the mapping.

To view the current mapping, issue an HTTP GET to the _mapping endpoint of the type’s
URL:

% curl 'localhost:9200/get-together/group/_mapping?pretty'
{
 "group" : {
 "properties" : {
 "name" : {
 "type" : "string"
 },
 "organizer" : {
 "type" : "string"
 }
 }
 }
}

The response contains the following relevant data:

• Type name—group
• Property list—name and organizer

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

39

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Property options—The type is string for both properties

We talk more about indices, mappings, and mapping types in chapter3. For now, let’s
define a mapping, and then index some documents by running a script from the code samples
that came with this book.

2.3.3 Indexing documents from the code samples
Before we look at searching through the indexed documents, let’s do some more indexing by
running populate.sh from the code samples for chapter 2.

NOTE To download the source code, visit https://github.com/dakrone/elasticsearch-in-action,
and then follow the instructions from there.

The script first deletes the get-together index you created. Then, it re-creates it and
creates the mapping that’s defined in mapping.json. The mapping file specifies options other
than those you’ve seen so far, and we explore them in the rest of the book, mostly in chapter
3. Finally, the script indexes documents in two types: group and event. There is a parent-child
relationship between those types (events belonging to groups), which we explore in chapter 8.
For now, ignore this relationship.

Running the populate.sh script should look similar to the following listing.

Listing 2.1 Indexing data with the populate.sh script

% ./populate.sh
WARNING, this script will delete the 'get-together' index and re-index all data!
Press Control-C to cancel this operation.
Press [Enter] to continue.
Creating 'get-together' index...
{"acknowledged":true}
Done creating 'get-together' index. #A
Indexing data...
Indexing groups...
{"_index":"get-together","_type":"group","_id":"1","_version":1}
#more replies like this, one for each document
Done indexing groups. #A
Indexing events...
{"_index":"get-together","_type":"event","_id":"10","_version":1}
#more replies like this, one for each document
Done indexing events. #A
{"_shards":{"total":4,"successful":2,"failed":0}}
Done indexing data. #A

#A JSON replies, which come from Elasticsearch to acknowledge indexing

After running the script, you’ll have a handful of groups that meet and the events planned for
those groups. Let’s have a look at how you can search through those documents.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

40

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

2.4 Searching for and retrieving data
As you might imagine, there are many options around how to search. After all, searching is
what Elasticsearch is for.

NOTE We look at the most common ways to search in chapter 4; you learn more about getting
relevant results in chapter 6, and you learn all about search performance in chapter 10.

To take a closer look at the pieces that make up a typical search, let’s search for groups
that contain the word “elasticsearch” but ask only for the name and location fields of the most
relevant document. The following listing shows the GET request and response.

Listing 2.2 Search for “elasticsearch” in groups

% curl "localhost:9200/get-together/group/_search?\ #A
q=elasticsearch\ #B
&fields=name,location\ #B
&size=1\ #B
&pretty" #C
{ #D
 "took" : 2, #D
 "timed_out" : false, #D
 "_shards" : { #D
 "total" : 2, #D
 "successful" : 2, #D
 "failed" : 0 #D
 }, #D
 "hits" : { #D
 "total" : 2, #D
 "max_score" : 0.9066504, #D
 "hits" : [{ #D
 "_index" : "get-together", #D
 "_type" : "group", #D
 "_id" : "3", #D
 "_score" : 0.9066504, #D
 "fields" : { #D
 "location" : "San Francisco, California, USA", #D
 "name" : "Elasticsearch San Francisco" #D
 } #D
 }] #D
 } #D
} #D

#A URL indicates where to search: in the group type of the get-together index
#B URI parameters give the details of the search: find documents containing “elasticsearch”, but return

only the name and location fields for the top result
#C Flag to print the JSON reply in a more readable format
#D JSON reply

The following items are the three most important pieces of a search request:

• Where to search
• Contents of the reply

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

41

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• How to search

In this section, we’ll give you a brief overview of each item (we provide more details in
chapter 4),and you’ll also see how to retrieve documents by ID.

2.4.1 Where to search
You can tell Elasticsearch to look in a specific type of a specific index, as in listing 2.2, but you
can also search in multiple types in the same index, in multiple indices, or in all indices.

To search in multiple types, use a comma-separated list. For example, to search in both
group and event types, run a command like this:

% curl "localhost:9200/get-together/group,event/_search\
?q=elasticsearch&pretty"

You can also search in all types of an index by sending your request to the _search endpoint
of the index’s URL:

% curl 'localhost:9200/get-together/_search?q=sample&pretty'

Similar to types, to search in multiple indices, separate them with a comma:

% curl "localhost:9200/get-together,other-index/_search\
?q=elasticsearch&pretty"

To search in all indices, omit the index name altogether:

% curl 'localhost:9200/_search?q=elasticsearch&pretty'

TIP If you need to search in all indices, you can also use an alias called _all as the index name.
This comes in handy when you need to search in a single type across all indices as in this
example: http://localhost:9200/_all/event/.

This flexibility regarding where to search allows you to organize data in multiple indices and
types, depending on what makes sense for your use case. For example, log events are often
organized in time-based indices, such as “logs-2013-06-03”, “logs-2013-06-04”, and so on.
Such a design implies that today’s index is hot: all new events go here, and most of the
searches are in recent data. The hot index contains only a fraction of all your data, making it
easier to handle and faster. And you can still search in older data or in all data if you need to.
You’ll learn more about such design patterns in part 3, which is all about performance and
administration.

2.4.2 Contents of the reply
 In addition to the documents that match your search criteria, the reply of a search contains
information that’s useful for checking the performance of your search or the relevance of the
results.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

42

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://localhost:9200/_all/event/
http://www.manning-sandbox.com/forum.jspa?forumID=871

You might have some questions about listing 2.2 regarding what the reply from
Elasticsearch contains. What’s the score about? What happens if not all shards are available?
Let’s look at each part of the reply shown the following listing.

Listing 2.3 Search reply returning two fields of a single resulting document

{
 "took" : 2, #A
 "timed_out" : false, #A
 "_shards" : {
 "total" : 2, #B
 "successful" : 2, #B
 "failed" : 0 #B
 },
 "hits" : {
 "total" : 2, #C
 "max_score" : 0.9066504, #C
 "hits" : [{ #D
 "_index" : "get-together", #D
 "_type" : "group", #D
 "_id" : "3", #D
 "_score" : 0.9066504, #D
 "fields" : { #D
 "location" : "San Francisco, California, USA", #D
 "name" : "Elasticsearch San Francisco" #D
 } #D
 }] #D
 }
}

#A How long your request took and if it timed out
#B How many shards were queried
#C Statistics on all documents that matched
#D The results array

As you can see, the JSON reply from Elasticsearch includes information on time, shards, hits
statistics, and the documents you asked for. We’ll look at each of these in turn.

TIME
The first items of a reply look something like this:

 "took" : 2,
 "timed_out" : false,

The took field tells you how long Elasticsearch needed to process your request. The time is
in milliseconds. The timed_out field indicates whether your search timed out. By default,
searches never time out, but you can specify a limit via the timeout parameter. For example,
the following search times out after three seconds:

% curl "localhost:9200/get-together/group/_search\
?q=elasticsearch\
&pretty\
&timeout=3"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

43

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

If a search times out, the value of timed_out is true, and you get only results that were
gathered until the search timed out.

SHARDS
The next bit of the response is information about shards involved in the search:

"_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 }

This might look natural to you because you searched in one index, which by default has
five shards. All shards replied, so successful is 5, which leaves failed with 0.

You might wonder what happens when a node goes down and a shard can’t reply to a
search request. Take a look at figure 2.11, which shows a cluster of three nodes, each with
only one shard and no replicas. If one node goes down, some data would be missing. In this
case, Elasticsearch gives you the results from shards that are up and reports the number of
shards unavailable for search in the failed field.

Figure 2.11 Partial results can be returned from shards that are still available

HITS STATISTICS
The last element of the reply is called hits and is quite lengthy because it contains an array of
the matching documents. But before that array, it contains a couple of statistics:

 "total" : 2,
 "max_score" : 0.90178301

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

44

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

In total, you see the total number of matching documents, and in max_score, you see the
maximum score of those matching documents.

DEFINITION The score of a document returned by a search is the measure of how relevant that
document is for the given search criteria. By default, the score is calculated with the tf-idf (term
frequency-inverse document frequency) algorithm. Term frequency means for each term (word)
you search, the document’s score is increased if it has more occurrences of that term. Inverse
document frequency means the score is increased more if the term is rare across all documents
because it’s considered more relevant. If the term occurs often in other documents, it’s probably
a common term, thus less relevant. We’ll show you how to make your searches more relevant in
chapter 6.

The total number of documents may not match the number of documents you see in the
reply. By default, Elasticsearch limits the number of results to 10, so if you can have more
than 10 results, look at the value of total for the precise number of documents that match
your search criteria. As you saw previously, to change the number of results returned, use the
size parameter.

RESULTING DOCUMENTS
The array of hits is usually the most interesting information in a reply:

"hits" : [{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "3",
 "_score" : 0.9066504,
 "fields" : {
 "location" : "San Francisco, California, USA",
 "name" : "Elasticsearch San Francisco"
 }
 }]

Each matching document is shown with the index and type it belongs to, its ID, and its
score. The values of the fields you specified in your search query are also shown. In listing
2.2, you used fields=name,location. If you don’t specify which fields you want, the _source
field is shown. Like _all, _source is a special field, where, by default, Elasticsearch stores the
original JSON document. You can configure what gets stored in the source, and we explore
that in chapter 3.

2.4.3 How to search
So far, you’ve searched through what’s called a URI request, so named because all your
search options go into the URI. This is good for simple searches you run on the command line,
but in production, a URI request can get lengthy and be hard to maintain.

Another option is to put your query in the data part of your request. Elasticsearch allows
you to specify the search criteria in JSON format, which is much easier to read and write,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

45

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

particularly for complex searches. For example, to search for all groups that are about
Elasticsearch, you could do this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "elasticsearch"
 }
 }
}'

In plain English, this translates to “run a query of type query_string, where the string is
elasticsearch.” It might seem like too much boilerplate to type in elasticsearch, but this is
because JSON provides many more options than a URI request. As you’ll see in chapter 4,
using a JSON query makes sense when you start to combine different types of queries:
squeezing all those options in a URI would be more difficult to handle. Let’s explore each field.

SETTING QUERY STRING OPTIONS
At the last level of the JSON request, you have "query": "elasticsearch", and you might
think the "query" part is redundant because we already know it’s a query. But a query_string
provides more options than the string itself.

For example, if you search for “elasticsearch san francisco”, Elasticsearch looks in the _all
field by default. If you wanted to look in the group’s name instead, you’d specify

"default_field": "name"

Also by default, Elasticsearch returns documents matching any of the specified words. If
you wanted to match all the words, you’d specify

"default_operator": "AND"

The revised query looks like this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "elasticsearch san francisco",
 "default_field": "name",
 "default_operator": "AND",
 }
 }
}'

Another way to achieve the same results is to specify the field and the operator in the
query string itself:

"query": "name:elasticsearch AND name:san AND name:francisco"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

46

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The query string is a powerful tool to specify your search criteria. Elasticsearch parses the
string to understand the terms you’re looking for and your other options, such as fields and
operators, and then runs the query. This functionality is inherited from Lucene.6

CHOOSING THE RIGHT QUERY TYPE
If the query_string query type looks intimidating, the good news is there are many other types
of queries, most of which we cover in chapter 4. For example, if you’re looking only for the
term “elasticsearch” in the name field, a term query would be faster and more
straightforward:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "query": {
 "term": {
 "name": "elasticsearch"
 }
 }
]'

USING FILTERS
So far, all the searches you’ve seen have been queries. Queries give you back results, and
each result has a score. If you’re not interested in the score, you can run a filter instead.
Filters care only whether a result matches the search or not, and as a result, they’re faster
and easier to cache than their query counterparts. For example, the following filter looks for
the term “elasticsearch” in the name of groups:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
 "filter": {
 "term": {
 "name": "elasticsearch"
 }
 }
}'

The results are the same as the ones you get with the equivalent term query, but filter
results aren’t sorted by score (because the score is 1.0 for all results). Like queries, we cover
filters in chapter 4.

APPLYING AGGREGATIONS
In addition to queries and filters, you can do all sorts of statistics through aggregations. We
look at aggregations in chapter 8, but let’s look at a simple example here.

Suppose a user is visiting your get-together website and wants to explore the kinds of
groups that are available. You might want to show who the group organizers are. For example,

6 If you want to find out more about the query string syntax, visit
http://lucene.apache.org/core/4_4_0/queryparser/org/apache/lucene/ queryparser/classic/package-
summary.html#package_description.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

47

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://lucene.apache.org/core/4_4_0/queryparser/org/apache/lucene/
http://www.manning-sandbox.com/forum.jspa?forumID=871

if “Lee” comes up in the results as the organizer of seven meetings, a user who knows Lee
might click his name to filter only those seven meetings.

To return people who are group organizers, you can use a terms aggregation. This shows
counters for each term that appears in the field you specify—in this case, organizer. The
aggregation might look like this:

% curl localhost:9200/get-together/group/_search?pretty -d '{
 "aggs" : {
 "genders" : {
 "terms" : { "field" : "organizer" }
 }
 }
}'

In plain English this request translates to “give me an aggregation named tags, which is of
type terms and is looking at the organizer field.” The following results display at the bottom of
the reply:

"aggregations" : {
 "genders" : {
 "buckets" : [{
 "key" : "lee",
 "doc_count" : 2
 }, {
 "key" : "andy",
 "doc_count" : 1
 }, {
 "key" : "daniel",
 "doc_count" : 1
 }, {
 "key" : "mik",
 "doc_count" : 1
 }, {
 "key" : "tyler",
 "doc_count" : 1
 }]
 }
 }

The results show you that, out of the six total terms, “lee” appears two times, “andy” one
time, and so on. We have two groups organized by Lee. You could then search for the groups
for which Lee is the organizer to narrow down your results.

Aggregations are useful when you can’t search for what you need because you don’t know
what that is. What kind of groups are available? Are there any events hosted near where I
live? You can use aggregations to drill down in the available data and see real-time statistics.

Other times, you have the opposite scenario. You know exactly what you need, and you
don’t want to run a search at all. That’s when it’s useful to retrieve a document by ID.

2.4.4 Getting documents by ID
To retrieve a specific document, you must know the index and type it belongs to and its ID.
You then issue an HTTP GET request to that document’s URI:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

48

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

% curl 'localhost:9200/get-together/group/1?pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "exists" : true, "_source" : {
 "name": "Denver Clojure",
 "organizer": ["Daniel", "Lee"],
 "description": "Group of Clojure enthusiasts from Denver who want to hack on

code together and learn more about Clojure",
 "created_on": "2012-06-15",
 "tags": ["clojure", "denver", "functional programming", "jvm", "java"],
 "members": ["Lee", "Daniel", "Mike"],
 "location": "Denver, Colorado, USA"
}
}

The reply contains the index, type, and ID you specified. If the document exists, you’ll see
that the exists field is true, in addition to its version and its source. If the document doesn’t
exist, exists is false:

% curl 'localhost:9200/get-together/group/doesnt-exist?pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "doesnt-exist",
 "exists" : false
}

As you might expect, getting documents by ID is much faster and less expensive in terms
of resources than searching. It’s also done in real time: as soon as an indexing operation is
finished, the new document can be fetched through this GET API.

Remember that newly indexed documents only appear in searches after a refresh. When
you index something, you must wait for the automatic refresh to apply—which occurs once per
second by default. Alternatively, you can refresh the index manually, by sending an HTTP POST
request to the URL of that index:

% curl -XPOST 'localhost:9200/get-together/_refresh?pretty'
{
 "ok" : true,
 "_shards" : {
 "total" : 4,
 "successful" : 2,
 "failed" : 0
 }
}

Unlike searching, when you get documents by ID, you don’t need to wait for a refresh
unless you set action.get.realtime to false in your elasticsearch.yml configuration file. In
fact, let’s take a closer look at how to configure Elasticsearch.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

49

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

2.5 Configuring Elasticsearch
One of Elasticsearch’s strong points is that it has developer-friendly defaults, making it easy to
get started. As you saw in the previous section, you can do indexing and searching on your
own test server without making any configuration changes. Elasticsearch automatically creates
an index for you and detects the type of new fields in your documents.

Elasticsearch also scales easily and efficiently, which is another important feature when
you’re dealing with large amounts of data or requests. In the final section of this chapter,
you’ll start a second Elasticsearch instance, in addition to the one you already started in
chapter 1, and let them form a cluster. This way, you’ll see how Elasticsearch scales out and
distributes your data throughout the cluster.

Although scaling out can be done without any configuration changes, we’ll tweak a few
knobs in this section to avoid surprises later when you add a second node. We’ll make the
following changes in three different configuration files:

• Specify a cluster name in elasticsearch.yml—This is the main configuration file where
Elasticsearch-specific options go.

• Edit logging options in logging.yml—The logging configuration file is for logging options
of log4j, the library that Elasticsearch uses for logging.

• Adjust memory settings in environment variables or elasticsearch.in.sh—This file is for
configuring the Java virtual machine (JVM) that powers Elasticsearch.

There are a few others, and we’ll point them out as they appear, but those listed are the
most commonly used. Let’s walk through each of these configuration changes.

2.5.1 Specifying a cluster name in elasticsearch.yml
The main configuration file of Elasticsearch can be found in the config/ directory of the
unpacked tar.gz or zip archive.

TIP The file is in /etc/elasticsearch/ if you installed it from the RPM or DEB package.

Like the REST API, the configuration can be in JSON or YAML. Unlike the REST API, the
most popular format is the YAML. It’s easier to read and use, and all the configuration samples
in this book are based on elasticsearch.yml.

By default, new nodes discover existing clusters via multicast—by sending a ping to all
hosts listening on a specific multicast address. If a cluster is discovered, the new node joins it
only if it has the same cluster name. Let’s customize the cluster name to prevent instances of
the default configuration from joining our cluster. To change the cluster name, add the
following line to your .yml file:

cluster.name: elasticsearch-in-action

After you update the file, stop Elasticsearch by pressing Control-C, and then start it again
with the following command:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

50

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

bin/elasticsearch

2.5.2 Specifying verbose logging via logging.yml
When something goes wrong, application logs are the first place to look for clues. They’re also
useful when you just want to see what’s going on. If you need to look in Elasticsearch’s logs,
the default location is the logs/ directory under the path where you unpacked the zip/tar.gz
archive.

TIP If you installed it from the RPM or DEB package, the default path is /var/log/elasticsearch/.

Elasticsearch log entries are organized in three types of files:

• Main log (cluster-name.log)— Here you can find general information about what
happens when Elasticsearch is running, for example, whether a query failed or a new
node joined the cluster.

• Slow-search log (cluster-name_index_search_slowlog.log)— This is where Elasticsearch
logs when a query runs too slow. By default, if a query takes more than half a second,
it logs an entry here.

• Index-slow log (cluster-name_index_indexing_slowlog.log)—This is similar to the slow-
search log, but, by default, it writes an entry if an indexing operation takes more than
half a second.

To change logging options, you edit the logging.yml file, which is located in the same place
as elasticsearch.yml. Elasticsearch uses log4j (http://logging.apache.org/log4j/), and the
configuration options in logging.yml are specific to this logging utility.

As with other settings, the defaults are sensible, but if, for example, you need more
verbose logging, a good first step is to change the rootLogger, which influences all the
logging. We’ll leave the defaults for now, but if you wanted to make it log everything, you’d
change the first line of logging.yml to this:

rootLogger: TRACE, console, file

By default, the logging level is INFO, which writes all events with a severity level of INFO or
above.

2.5.3 Adjusting JVM settings
As a Java application, Elasticsearch runs in a JVM, which, like a physical machine, has its own
memory. . The JVM comes with its own configuration, and the most important one is how
much memory you allow it to use. Choosing the correct memory setting is important for
Elasticsearch’s performance and stability.

Most of the memory used by Elasticsearch is called heap. The default setting lets
Elasticsearch allocate 256MB of your RAM for its heap, initially, and expand it up to 1GB. If
your searches or indexing operations need more than 1GB of RAM, those operations will fail

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

51

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://logging.apache.org/log4j/
http://www.manning-sandbox.com/forum.jspa?forumID=871

and you’ll see out of memory errors in your logs. Conversely, if you run Elasticsearch on an
appliance that has only 256MB of RAM, the default settings might allocate too much memory.

To change the default values, set the ES_MIN_MEM and ES_MAX_MEM environment variables.
Alternatively, you can use ES_HEAP_SIZE to set the same value for both. Set these
environment variables on the command line before starting Elasticsearch.
On Unix-like systems, use the export command:

export ES_HEAP_SIZE=500m; bin/elasticsearch

On Windows, use the SET command:

SET ES_HEAP_SIZE=500m & bin\elasticsearch.bat

A more permanent way to set these variables is by changing bin/elasticsearch.in.sh (and
elasticsearch.bat on Windows). Add ES_HEAP_SIZE=500m at the beginning of the file, after
#!/bin/sh.

TIP If you installed Elasticsearch though the DEB package, change these variables in
/etc/default/elasticsearch. If you installed from the RPM package, the same settings can be
configured in /etc/sysconfig/elasticsearch.

For the scope of this book, the default values should be adequate. If you run more
extensive tests, you may need to allocate more memory. If you’re on a machine with less that
1GB of RAM, lowering those values to something like 200m should also work.

How much memory to allocate in production
Start with half of your total RAM as ES_HEAP_SIZE, if you run Elasticsearch only on that server. Try
with less if other applications need significant memory. The other half is used by the operating
system for caches, which make for faster access to your stored data. Beyond that rule of thumb,
you’ll have to run some tests while monitoring your cluster to see how much memory Elasticsearch
needs. We talk more about performance tuning and monitoring in part 2 of the book.

Now that you’ve gotten your hands dirty with Elasticsearch configuration options and you’ve
indexed and searched through some data, let’s get a taste of the “elastic” part of
Elasticsearch: the way it scales—we cover this topic in depth in chapter 9. You could just as
well work through all chapters with a single node, but to get an overview of how scaling
works, let’s add more nodes to the same cluster.

2.6 Adding nodes to the cluster
In chapter 1, you unpacked the tar.gz or zip archive and started up your first Elasticsearch
instance. This created your one-node cluster. Before you add a second node, let’s check the
cluster’s status to visualize how data is currently allocated. You can do that with a graphical

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

52

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

tool such as Elasticsearch Kopf or Elasticsearch Head, which we mentioned previously (see
section 2.1.4) when you indexed a document. Figure 2.12 shows the cluster in Kopf.

Figure 2.12 One-node cluster shown in Elasticsearch Kopf

If you don’t have either of these plugins installed, you can always get this information from
the command line via the Cluster Health API: 7

% curl 'localhost:9200/_cluster/health?pretty'
{
 "cluster_name" : "elasticsearch-in-action",
 "status" : "yellow",
 "timed_out" : false,
 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 2,
 "active_shards" : 2,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 2
}

Either way, you should see the following information:

• Cluster name, as you defined it previously in elasticsearch.yml.
• There’s only one node.
• The get-together index has two primary shards, which are active. The unassigned

shards represent a set of replicas that were configured for this index. Because there’s
only one node, those replicas remain unallocated.

The unallocated replica shards cause the status to be yellow. This means all the primaries
are there, but not all the replicas. If primaries were missing, the cluster would be red, to
signal at least one index being incomplete. If all replicas would be allocated, the cluster would
be green, to signal that everything works as expected.

7 www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-health.html

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

53

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-health.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

2.6.1 Starting a second node
From a different terminal, run bin/elasticsearch or elasticsearch.bat. This starts another
Elasticsearch instance on the same machine. You’d normally start new nodes on different
machines to take advantage of additional processing power, but for now we’ll run everything
locally.

In the terminal or log file of the new node, you should see a line that begins like this:

[INFO][cluster.service] [Raman] detected_master [Hammond, Jim]

Hammond, Jim is the name of your first node. What happened was that your second node
detected the first one via multicast and joined the cluster. The first node is also the master of
the cluster, which means it’s responsible for keeping information such as which nodes are in
the cluster and where shards are located. This information is called cluster state and it’s
replicated to other nodes. If the master goes down, another node can be elected to take its
place.

If you look at your cluster’s status in figure 2.13, you can see that the set of replicas was
allocated to the new node, making the cluster green.

Figure 2.13 Replica shards are allocated to the second node

2.6.2 Adding additional nodes
If you run bin/elasticsearch or elasticsearch.bat again, to add a third node, and then a fourth,
you’ll see that they detect the master via multicast and join the cluster in the same way.
Additionally, as shown in figure 2.14, the four shards of the get-together index automatically
get balanced across the cluster.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

54

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 2.14 Elasticsearch automatically distributes shards across the growing cluster.

At this point you might wonder what happens if you add more nodes. By default, nothing
happens because you have four total shards that can’t be distributed to more than four nodes.
That said, if you need to scale, you have a few options:

• Change the number of replicas. Replicas can be updated on the fly, but scaling this way
increases only the number of concurrent searches your cluster can serve. The indexing
throughput as well as the performance of isolated searches remains the same.

• Create an index with more shards. This implies reindexing your data because the
number of shards can’t be changed on the fly.

• Add more indices. Some data can be easily designed to use more indices. For example,
if you index logs, you can put each day’s logs in its own index.

We discuss these patterns for scaling out in chapter 9. Again, scaling out for more
concurrent searches isn’t a problem because you can change the number of replicas. The real
challenge is in making indexing and individual searches run fast; a topic we discuss in chapter
10.

2.7 Summary
• Elasticsearch is document-oriented, scalable, and schema-free by default.
• Although you can form a cluster with the default settings, you should adjust at least

some of them before you go to production; for example, cluster name and heap size.
• Indexing requests are distributed among the primary shards and replicated to those

primary shards’ replicas.
• Searches are done using a round-robin approach between complete sets of data, no

matter if those are made up of shards or replicas. The node that received the search

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

55

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

request then aggregates partial results from individual shards and returns those results
to the application.

• Client applications may be unaware of the sharded nature of each index or what the
cluster looks like. They care only about indices, types, and document IDs. They use the
HTTP REST API to index and search for documents.

• You can send new documents and search parameters as the JSON payload of a HTTP
request, and you’ll get back a JSON reply with the results.

In the next chapter, you’ll get the foundation you need to organize your data effectively in
Elasticsearch, you’ll learn what types of fields your documents can have, and you’ll become
familiar with all the relevant options for indexing, updating, and deleting.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

56

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 2.1 An Elasticsearch cluster from the application’s and administrator’s point of view 25
Figure 2.2 Logical layout of data in Elasticsearch: how an application sees data 26
Figure 2.3 A three-node cluster with an index divided into five shards, with one replica per shard 30
Figure 2.4 Documents gets indexed to random primary shards and their replicas. Searches run on complete

sets of shards, regardless of their status as primaries or replicas. .. 31
Figure 2.5 Term dictionary and frequencies in a Lucene index.. 32
Figure 2.6 Multiple primary and replica shards make up the "get-together" index 33
Figure 2.7 Obtaining more performance by scaling vertically compared to scaling horizontally 34
Figure 2.8 Indexing operation is forwarded to the responsible shard, then to its replicas 35
Figure 2.9 Search request is forwarded to shards/replicas containing a complete set of data. Then, results

are aggregated and sent back to the client .. 35
Figure 2.10 URI of a document in Elasticsearch.. 36
Figure 2.11 Partial results can be returned from shards that are still available 44
Figure 2.12 One node cluster shown in Elasticsearch Kopf ... 53
Figure 2.13 Replica shards are allocated to the second node ... 54
Figure 2.14 Elasticsearch automatically distributes shards across the growing cluster. 55

Listing 2.1 Indexing data with the populate.sh script .. 40
Listing 2.2 Search for “elasticsearch” in groups .. 41
Listing 2.3 Search reply returning two fields of a single resulting document ... 43

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

57

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

3
Indexing, updating, and deleting

data

This chapter covers

• Using mapping types to define multiple types of documents in the same index
• Types of fields you can use in mappings
• Using predefined fields and their options
• Updating and deleting data

This chapter is all about getting data in and out of Elasticsearch: indexing, updating and
deleting documents. In chapter 1, you learned that Elasticsearch is document-based and that
documents are made up of fields and their values, which makes them self-contained, much
like having the column names from a table contained in the rows. In chapter 2, you saw how
you can index such a document via Elasticsearch’s REST API. Here, we’ll dive deeper into the
indexing process, by looking at the fields in those documents and what they contain. For
example, when you index a document that looks like this:

{"name": "Elasticsearch Denver"}

the name field is a string because its value, Elasticsearch Denver, is a string. Other
fields could be numbers, booleans, and so on. In this chapter, we’ll look at three types of
fields:

• Core—These fields include strings and numbers.
• Arrays and multi fields—These fields help you store multiple values of the same core

type, in the same field. For example, you can have multiple tag strings in your tags
field.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

58

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Predefined—Examples of these fields include _ttl (which stands for “time to live”) and
timestamp.

Think of these field types as metadata that can be automatically managed by Elasticsearch
to give you additional functionality. For example, you can store some fields in a way that make
your indices smaller, you can configure Elasticsearch to automatically add new data to
documents, such as a timestamp, or you can use the _ttl field to get your documents
automatically deleted after a specified amount of time.

Once you know the field types that can be in your documents and how to index them, we’ll
look at how you can update documents that are already there. Because of the way it stores
data, when Elasticsearch updates an existing document, it retrieves it and applies changes
according to your specifications. It then indexes the resulting document again and deletes the
old one. Such updates can raise concurrency issues, and you’ll see how they can be solved
automatically with document versions.

You’ll also see various ways of deleting documents. Some ways are faster than others. This
is again due to the particular way Apache Lucene, the main library used by Elasticsearch for
indexing, stores data on disc.

We’ll start with indexing, by looking at how you can manage fields from your documents.
As you saw in chapter 2, fields are defined in mappings, so before we dive into how you can
work with each type of field, we’ll look at how you can work with mappings in general.

3.1 Using mappings to define kinds of documents
Each document belongs to a type, which in turn belongs to an index. As a logical division of
data, you can think of indices as databases, and types as tables. For example, the get-
together website that we introduced in chapter 2 uses a different type for groups and events
because those documents have different structures. Note that if you also had a blog on that
website, you might keep blog entries and comments in a separate index, because it’s a
completely different set of data.

Types contain a definition of each field in the mapping. The mapping includes all the fields
that might appear in documents from that type and tells Elasticsearch how to index the fields
in a document. For example, if a field contains a date, you can define which date format is
acceptable.

Types provide only logical separation
With Elasticsearch, there’s no physical separation of documents that have different types. All
documents within the same Elasticsearch index, regardless of type, end up in the same set of files
belonging to the same shards. In a shard, which is a Lucene index, the name of the type is a field,
and all fields from all mappings come together as fields in the Lucene index.

The concept of a type is a layer of abstraction specific to Elasticsearch, but not Lucene, which
makes it easy for you to have different kinds of documents in the same index. Elasticsearch takes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

59

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

care of separating those documents, for example, by filtering documents belonging to a certain type,
when you search in that type only.

This approach creates a problem when the same field name occurs in multiple types. To avoid
unpredictable results, two fields with the same name should have the same settings, otherwise
Elasticsearch might have a hard time figuring out which of the two fields you’re referring to. In the
end, both those fields belong to the same Lucene index. For example, if you have a name field in
both group and event documents, both should be strings, not one a string and one an integer. This is
rarely a problem in real life, but it’s worth remembering to avoid surprises.

In figure 3.1, groups and events are stored in different types. The application can then search
in a specific type, such as events. Elasticsearch also allows you to search in multiple types at
once. Or even in all types of an index, by specifying only the index name when you search.

Figure 3.1 Using types to divide data in the same index; searches can run in one, multiple, or all types

Now that you know how mappings are used in Elasticsearch, let’s have a look at how you
can read the mapping of a type and how you can write one.

3.1.1 Retrieving and defining mappings
When you’re learning Elasticsearch, you often don’t need to worry about the mapping because
Elasticsearch detects your fields automatically and adjusts your mapping accordingly. You’ll
have a look at how that works in listing 3.1.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

60

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

GETTING THE CURRENT MAPPING
To see the current mapping of a field type, issue an HTTP GET on _mapping under the type’s
URL:

curl 'localhost:9200/get-together/group/_mapping?pretty'

In the following listing, you first index a new document from your get-together website,
specifying a new type called new-events, and Elasticsearch automatically creates the mapping
for you. You then retrieve the created mapping, which shows you the fields from your
document and the field types that Elasticsearch detected for each field.

Listing 3.1 Getting an automatically generated mapping

% curl -XPUT 'localhost:9200/get-together/new-events/1' -d '{
 #A
 "name": "Late Night with Elasticsearch",
 #A
 "date": "2013-10-25T19:00"
 #A
}'
 #A
% curl 'localhost:9200/get-together/new-events/_mapping?pretty'
 #B
expected result:
#{
"get-together" : {
 #C
"new-events" : {
"properties" : {
"date" : {
 #D
"type" : "date",
 #D
"format" : "dateOptionalTime"
 #D
},
"name" : {
 #D
"type" : "string"
 #D
}
}
}
}
#}

#A Indexes a new document
#B Gets the mapping
#C Type name is included in the result
#D The two fields in the document were detected as well as the type of each field

DEFINING A NEW MAPPING
To define a mapping, you use the same URL as previously, but do an HTTP PUT instead of GET.
You need to specify the JSON mapping in the body using the same format that’s returned

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

61

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

when you retrieve a mapping. For example, the following request puts a mapping that has
only one string field:

% curl -XPUT 'localhost:9200/get-together/new-events/_mapping' -d '{
 "new-events" : {
 "properties" : {
 "host": {
 "type" : "string"
 }
 }
 }
}'

You can define a new mapping after you create the index but before inserting any
document into that type. Why does this PUT work if, as shown in listing 3.1, you already had a
mapping in place? We’ll explain why next.

3.1.2 Extending an existing mapping
When you put a mapping over an existing one, Elasticsearch merges the two. If you ask
Elasticsearch for the mapping now, you should get something like this:

{
 "get-together" : {
 "new-events" : {
 "properties" : {
 "date" : {
 "type" : "date",
 "format" : "dateOptionalTime"
 },
 "host" : {
 "type" : "string"
 },
 "name" : {
 "type" : "string"
 }
 }
 }
 }
}

As you can see, the mapping now contains the two fields from the initial mapping, plus the
new field you defined. The initial mapping was extended with the newly added field, which is
something you can do at any point. Elasticsearch calls this a merge between the existing
mapping and the one you provide.

Unfortunately, not all merges work. For example, you can’t change an existing field’s data
type, and, in general, you can’t change the way a field is indexed. Let’s take a closer look into
why this happens. As shown in the following listing, if you try to change the host field to a
long, it fails with a MergeMappingException.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

62

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Listing 3.2 Trying to change an existing field type from string to long fails

% curl -XPUT 'localhost:9200/get-together/new-events/_mapping' -d '{
 "new-events" : {
 "properties" : {
 "host": {
 "type" : "long"
 }
 }
 }
}'
expected result
{"error":"MergeMappingException[Merge failed with failures {[mapper [host] of

different type, current_type [string], merged_type [long]]}]","status":400}

The only way around this error is to reindex all the data in new-events, which involves the
following steps:

• Removing all data from the new-events type—you’ll learn later in this chapter how to
delete data. Removing data also removes the current mapping.

• Put the new mapping.
• Index all the data again.

To understand why reindexing might be required, imagine you’ve already indexed an event
with a string in the host field. If you want the host field to be long now, Elasticsearch would
have to change the way host is indexed in the existing document. As you’ll explore later in this
chapter, editing an existing document implies deleting and indexing again.

To define correct mappings, that hopefully won’t need changes, only additions, let’s look
at the core types you can choose for your fields in Elasticsearch, and what you can do with
them.

3.2 Core types for defining your own fields in documents
With Elasticsearch, a field can be one of the core types (see table 3.1), such as a string or a
number, or it can be a more complex type derived from core types, such as an array.

There are some additional types, not covered in this chapter. For example, there’s the
nested type, which allows you to have documents within documents. Or the geo_point type,
which stores a location on Earth based on its longitude and latitude. We’ll discuss those
additional types in chapter 7, where we cover relationships among documents, and in
appendix A, where we discuss geospatial data.

NOTE In addition to the fields you define in your documents, such as name or date,
Elasticsearch uses a set of predefined fields to enrich them. For example, there’s an _all field,
where all the document’s fields are indexed together. This is useful when users search for
something without specifying the field—you can search in all fields. These predefined fields have
their own configuration options, and we’ll discuss them later in this chapter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

63

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Table 3.1 Elasticsearch core field types

Core type Example values

String "Lee", "Elasticsearch Denver"

Numeric 17, 3.2

Date 2013-03-15T10:02:26.231+1:00

Boolean Value can be either true or false

Let’s look at each of these core types, so you can make good mapping choices when you index
your own data.

3.2.1 String
Strings are the most straightforward: your field should be string if you’re indexing characters.
They’re also the most interesting because you have so many options in your mapping about
how to analyze them.

Analysis is the process of parsing the text to transform it and break it down into elements
to make searches relevant. If it sounds too abstract, don’t worry: chapter 5 explores the
concept. But let’s look at the basics now starting with the document you indexed in listing 3.1:

% curl -XPUT 'localhost:9200/get-together/new-events/1' -d '{
 "name": "Late Night with Elasticsearch",
 "date": "2013-10-25T19:00"
}'

With this document indexed, let’s search for the word “late” in the name field, which is a
string:

% curl 'localhost:9200/get-together/new-events/_search?pretty' -d '{
 "query": {
 "query_string": {
 "query": "late"
 }
 }
}'

And the search finds the “Late Night with Elasticsearch” document you indexed in Listing
3.1. Elasticsearch connects the strings "late" and "Late Night with Elasticsearch"
though analysis. As you can see in figure 3.2, when you index "Late Night with

Elasticsearch", the default analyzer lowercases all letters, and then breaks the string into
words.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

64

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 3.2 After the default analyzer breaks strings into terms, subsequent searches match those terms.

The analyzer removes the word "with" because it’s so common it belongs to a list of stop words. By
default, stop words are eliminated during analysis because they appear so frequently that they’re irrelevant
in searches.

The analysis produces three terms: “late”, “night”, and “elasticsearch”. The same process
is then applied to the query string, but this time, “late” produces the same string: “late.” The
document (doc1) matches the search because the “late” term that resulted from the query
matches the “late” term that resulted from the document.

DEFINITION A term is a word from the text and is the basic unit for searching. In different
contexts, this “word” can mean different things: it could be a name, or it could be an IP address,
for example. If you want only exact matches on a field, the entire field should be treated as a
word.

On the other hand, if you index “latenight”, the default analyzer creates only one term:
“latenight”. Searching for “late” won’t hit doc1 because it doesn’t include the term “late”.

MAPPING AND ANALYSIS INTERPLAY
This analysis process is where the mapping comes into play. You can specify many options
around analyzing in your mapping. For example, you can configure stemming to take place
during analysis. Stemming produces terms that are synonyms of your original terms, so
queries for synonyms match as well. We’ll dive into the details of analysis in chapter 5, as
promised, but for now, let’s look at the index option, which can be set to analyzed (the
default), not_analyzed or no. For example, to set the name field to not_analyzed, your
mapping might look like this:

% curl -XPUT 'localhost:9200/get-together/new-events/_mapping' -d '{
 "new-events" : {
 "properties" : {
 "name": {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

65

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "type" : "string",
 "index" : "not_analyzed"
 }
 }
 }
}'

Setting index to analyzed produces the behavior you saw previously: by default, the
analyzer lowercases all letters, breaks your string into words, and eliminates stop words. Use
this option when your strings are long enough and you expect a single matching word to
produce a match. For example, if users search for “elasticsearch,” they expect to see “Late
Night with Elasticsearch” in the list of results.

Setting index to not_analyzed does the opposite: the analysis process is skipped, and the
entire string is indexed as one term. Use this option when you want exact matches, such as
when you search for tags. You probably want only “big data” to show up as a result when you
search for “big data,” not “data”.

If you set index to no, then indexing is skipped and no terms are produced, so you won’t
be able to search on that particular field. When you don’t need to search on a field, this option
saves space and decreases the time it takes to index and search. For example, you might
store reviews for events. Although storing and showing those reviews is valuable, searching
through them might not be. In this case, disable indexing for that field, making the indexing
process faster and saving space.

Check if your query is analyzed when searching in fields that aren’t
For some queries, such as the query_string you used previously, the analysis process is applied to
your search criteria. It’s important to be aware if this is happening, otherwise results might not be as
expected.

For example, if you index “Elasticsearch,” and it’s not analyzed, it produces the term
“Elasticsearch”. When you query for “Elasticsearch” like this:
 curl 'localhost:9200/get-together/new-events/_search?q=Elasticsearch'

the URI request is analyzed, and the term “elasticsearch” (lowercased) is produced. But you don’t
have the term “elasticsearch” in your index; you have only “Elasticsearch” (with a capital E), so you
get no hits.

In chapter 4, which is all about searching, you’ll learn which query types analyze the input text
and which don’t.

Next, let’s look at how you can index numbers. Elasticsearch provides many core types that
can help you deal with numbers, so we’ll refer to them collectively as numeric.

3.2.2 Numeric
Numeric types can be with or without a floating point. If you don’t need decimals, you can
choose between byte, short, integer and long; if you do need them, your choices are float

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

66

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

and double. These types correspond to Java’s primitive data types, and choosing between
them influences the size of your index and the range of values you can index. For example,
whereas a long takes up 64 bits, a short takes up only 16 bits, but a long can store ranges
up to several trillion times larger than the -32,768 to 32,767 that a short can store.

If you don’t know the range you need for your integer values or the precision you need for
your floating point values, it’s safe to do what Elasticsearch does when it detects your
mapping automatically: use long for integer values, and double for floating-point values. Your
index might become larger and slower because these two types take up the most space, but
at least you’re unlikely to get an “out of range” error from Elasticsearch when indexing.

Now that we’ve covered strings and numbers, let’s look at a type that’s more purpose-
built: date.

3.2.3 Date
The date type is used for storing dates and times. It works like this: you normally provide a
string with a date, as in 2013-12-25T09:00:00. Then, Elasticsearch parses the string and
stores it as a number of type long in the Lucene index. That long is the number of
milliseconds that have elapsed since 00:00:00 UTC time on January 1, 1970 (UNIX epoch) and
the time you provided.

When you search for documents, you still provide date strings, and Elasticsearch parses
those strings and works with numbers in background. It does that because numbers are faster
to store and work with than strings.

You, on the other hand, only have to consider whether Elasticsearch understands the date
string you’re providing. The date format of your date string is defined by the format option,
and Elasticsearch parses ISO 8601 timestamps by default.

ISO 8601
An international standard for exchanging date- and time-related data, ISO 8601 is widely used in
timestamps due to RFC 3339 (https://www.ietf.org/rfc/rfc3339.txt). An ISO 8601 date looks like
this:
 2013-10-11T10:32:45.453-3:0

It has all the right ingredients of a good timestamp: information is read from left to right, from the
most important to the least important; the year has four digits; and the time includes subseconds
and time zone.

Much of the information in this timestamp is optional, for example, you don’t need to specify
milliseconds, and you can skip the time altogether.

When you use the format option to specify a date format, you have two options:

• Use a predefined date format. For example, the “date” format parses dates as “2013-
02-25.” Many predefined formats are available, and you can see them all here:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

67

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://www.ietf.org/rfc/rfc3339.txt
http://www.manning-sandbox.com/forum.jspa?forumID=871

www.elasticsearch.org/guide/reference/mapping/date-format/
• Specify your own custom format. You can specify a pattern for timestamps to follow.

For example, specifying “MMM YYYY” parses dates as “Jul 2001.” For a full reference on
building date patterns, visit: http://joda-time.sourceforge.net/api-
release/org/joda/time/format/DateTimeFormat.html

To put all this date information to use, let’s add a new mapping type called weekly-events,
as shown in listing 3.3. Then, as also shown in the listing, add a title and date of the first
event, and specify an ISO 8601 timestamp for that date. Also add a field with the date of the
next event, and specify a custom date format for that date.

Listing 3.3 Using default and custom time formats

% curl -XPUT 'localhost:9200/get-together/weekly-events/_mapping' -d '
{
 "weekly-events" : {
 "properties": {
 "next_event": {
 "type": "date",
 #A
 "format": "MMM DD YYYY"
 #A
 }
 }
 }
}'
% curl -XPUT 'localhost:9200/get-together/weekly-events/1' -d '
{
 "name": "Elasticsearch News",
 "first_occurence": "2011-04-03",
 #B
 "next_event": "Oct 25 2013"
}'

#A Defines the custom date format. Other dates are automatically detected and don’t need to be explicitly
defined.

#B Specifies a standard date/time format. Only the date is included; the time isn’t specified.

We’ve talked about strings, numbers, and dates; let’s move on to the last core type: boolean.
Like date, boolean is a type that’s more purpose-built.

3.2.4 Boolean
The boolean type is used for storing true/false values from your documents. For example,
you might want a field that indicates whether the event’s video is available for download. A
sample document could be indexed like this:

% curl -XPUT 'localhost:9200/get-together/new-events/downloadable' -d '{
 "name": "Broadcasted Elasticsearch News",
 "downloadable": true
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

68

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.elasticsearch.org/guide/reference/mapping/date-format/
http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/api-release/org/joda/time/format/DateTimeFormat.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

The downloadable field is automatically mapped as boolean and is stored in the Lucene
index as T for true or F for false. As with date fields, it parses the value you supply in the
source document and transforms true and false to T and F, respectively. If you supply a
number value, it transforms 0 to F and any other number to T:

% curl -XPUT 'localhost:9200/get-together/new-events/downloadable2' -d '{
 "name": "Broadcasted Big Data News",
 "downloadable": 0
}'

We’ve looked at the core types: string, numeric, date, and boolean, which you can use in
your own fields; let’s move on to arrays and multi fields, which enable you to use the same
core type multiple times.

3.3 Arrays and multi fields
Sometimes having simple field-value pairs in your documents isn’t enough. You might need to
have multiple values in the same field. For example, if you’re indexing blog posts, you might
want to have a tag field with one or more tags in it. In this case, you need an array.

3.3.1 Arrays
To index a field with multiple values, put those values in square brackets. For example:

% curl -XPUT 'localhost:9200/blog/posts/1' -d '{
 "tags": ["first", "initial"]
}'

At this point you might wonder, “How do you define an array field in your mapping?” The
answer is: you don’t. In this case, the mapping defines the tags field as string, as it does
when you have a single value:

% curl 'localhost:9200/blog/posts/_mapping?pretty'
{
 "posts" : {
 "properties" : {
 "tags" : {
 "type" : "string"
 }
 }
 }
}

You can combine arrays with their core type counterparts without changing your mapping.
For example, if the next blog post only has one tag, you can index it like this:

% curl -XPUT 'localhost:9200/blog/posts/2' -d '{"tags": "second"}'

Wherever you have a single value, it works the same as an array with a single element.

3.3.2 Multi-fields
If arrays are all about indexing more data with the same settings, multi-fields are about
indexing the same data multiple times using different settings.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

69

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

For example, in listing 3.4, you configure the tags field from your blog type with two
different settings: analyzed, for matches on every word; and not_analyzed, for exact
matches on the full tag name.

TIP You can “upgrade” a single field to a multi-field configuration without needing to reindex
your data. This is what happens if you’ve already created a tags string field before you run
listing 3.4.

Listing 3.4 Multi-field for a string: once analyzed, once not_analyzed

% curl -XPUT 'localhost:9200/blog/posts/_mapping' -d '{
 "posts" : {
 "properties" : {
 "tags" : {
 "type": "string", #A
 "index": "analyzed" #A
 "fields": {
 "verbatim": {
 "type": "string", #B
 "index": "not_analyzed" #B
 }
 }
 }
 }
 }
}'

#A The default tags field is analyzed, which lowercases and breaks the name into words
#B The second field, tags.verbatim, is not_analyzed, which makes the original tag a single term

You search in the analyzed version of the tags field as you do with any other string. To search
in the not_analyzed version (and get back only exact matches on the original tag), specify
the full path: tags.verbatim.

Both multi field and array field types let you have multiple core types into a single field.
Next, we’ll look at predefined fields, which are normally handled by Elasticsearch on its own,
to add new functionality to your documents, such as automatically expiring them.

3.4 Using predefined fields
Elasticsearch provides a number of predefined fields you can use and configure to add new
functionality. These predefined fields are different from the fields you’ve seen so far in three
ways:

• Typically, you don’t fill the content of predefined field; Elasticsearch does it.

For example, you can use the _timestamp field to record the date when a document
was indexed.

• They uncover field-specific functionality.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

70

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

For example, the _ttl (time to live) field enables Elasticsearch to remove documents
after a specified amount of time.

• Predefined field names always begin with an underscore (_).

These fields add new metadata to your documents, and Elasticsearch uses this
metadata for various features from storing the original document to storing timestamp
information for automatic expiry.

We’ll divide the predefined fields in the following categories:

• Control how to store and search your documents— _source lets you store the original
JSON document as you index it. _all indexes all your fields together.

• Identify your documents—These are special fields containing data about where your
document was indexed: _uid, _id, _type, _index.

• Add new properties to your documents—You can index the size of the original JSON
with _size. Similarly, you can index the time it was indexed with _timestamp and
make Elasticsearch delete it after a specified amount of time with _ttl.

• Control the shard where your documents are routed to—These are _routing and
_parent. We’ll look at them in chapter 8, where we talk about relationships among
documents.

3.4.1 Control how to store and search your documents
Let’s start by looking at _source, which lets you store the documents you index, and _all,
which lets you index all their content in a single field.

_SOURCE FOR STORING THE ORIGINAL CONTENTS
The _source field is for storing the original document, in the original format. This lets you see
the documents that matched a search, not only their IDs.

_source can have enabled set to true or false, to specify whether you want to store the
original document or not. By default it’s true, and, in most cases, that’s good because the
existence of _source allows you to use other important features of Elasticsearch. For example,
as you’ll learn later in this chapter, updating document contents using the update API needs
_source.

To see how this field works, let’s look at what Elasticsearch typically returns when you
retrieve a previously indexed document:

% curl 'localhost:9200/get-together/new-events/downloadable?pretty'
{
 "_index" : "get-together",
 "_type" : "new-events",
 "_id" : "downloadable",
 "_version" : 1,
 "exists" : true, "_source" : {
 "name": "Broadcasted Elasticsearch News",
 "downloadable": true
}
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

71

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

You also get the _source JSON back when you search, as it’s returned there by default as
well. If you disable _source, you don’t get the original document in the reply. This is typically
done when you have a separate data store for your original content. In such a situation, you
may want to index every entry in Elasticsearch with the same ID as in the data store. When
you search, get the list of IDs from the results, and then go back to the data store to get the
content. Such a process is illustrated in figure 3.3.

Figure 3.3 Using Elasticsearch for indexing only and using a different data store for document content

As you saw in sections 3.2 and 3.3, the fields you defined for your documents go under the
properties field under the JSON mapping. Predefined fields, including _source, go directly
under the mapping name. This makes it clear that predefined fields have a special status, and
they’re not another property of your document. In this case, the _source field is not content
that you add to document but a way to control how Elasticsearch stores it. The document
remains the same, it’s the functionality around it that changes. To disable _source, you can
define a mapping as shown in the following listing:

Listing 3.5 Disabling _source

% curl -XPUT localhost:9200/get-together/events_unstored/_mapping -d '{
 "events_unstored": {
 "_source": { "enabled": false}, #A
 "properties": {
 "name": { #B
 "type": "string" #B
 } #B
 }
 }
}'

#A Predefined field, defined at the root of the mapping type
#B Custom data field, defined under properties

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

72

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

RETURNING ONLY SOME FIELDS OF THE SOURCE DOCUMENT
When you retrieve or search for a document, you can ask Elasticsearch to return only specific
fields, and not the entire source. One way to do this is to give a comma-separated list of fields
in the fields parameter. For example:

% curl -XGET 'localhost:9200/get-together/group/1?pretty&fields=name'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "exists" : true,
 "fields" : {
 "name" : "Denver Clojure"
 }
}

When the source is stored, Elasticsearch automatically goes to the source, gets the
required fields and returns them to you. When you have no source, there’s nothing to return.
For example, if you followed listing 3.5 and indexed a sample document, trying to retrieve the
title won’t get you anything:

% curl 'localhost:9200/get-together/events_unstored/1?pretty&fields=name'
{
 "_index" : "get-together",
 "_type" : "events_unstored",
 "_id" : "1",
 "_version" : 1,
 "exists" : true
}

If _source is disabled, you can store individual fields by settings the store option to yes. For
example, to store only the name field, your mapping might look like this:

% curl -XPUT localhost:9200/get-together/events_unstored/_mapping -d '{
 "events_unstored": {
 "_source": { "enabled": false},
 "properties": {
 "name": {
 "type": "string",
 "store": "yes"
 }
 }
 }
}'

You can also choose to store both _source and individual fields. This might be useful when
you often ask Elasticsearch for a particular field because retrieving a single stored field will be
faster than retrieving the entire _source and extracting that field from it.

When you store _source and individual fields, you should take into account that the more
you store, the bigger your index gets. And usually, bigger indices imply slower indexing and
slower searching. The good news here is that since version 0.90, Elasticsearch automatically
compresses both _source and any individual fields you might choose to store. This is useful

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

73

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

because it keeps your index size small, and lets the operating system keep more of your data
in its caches. In most situations, the overhead of compressing and uncompressing fields is
insignificant when you compare it to the benefit of having smaller indices.

_ALL FOR INDEXING EVERYTHING
Just like _source is storing everything, _all is indexing everything. When you search in _all,
Elasticsearch will return a hit regardless of which field matches. This is useful when users are
looking for something without knowing where to look for, like searching for “elasticsearch”
may match the group name “Elasticsearch Denver” as well as the tag “elasticsearch” on other
groups.

Running a search from the URI without a field name will search on _all by default:

curl 'localhost:9200/get-together/group/_search?q=elasticsearch'

If you always search on specific fields, you can disable _all by setting enabled to false.
Like with _source, doing so will reduce the total size of your index and will make indexing
operations faster.

By default, each field is included in _all, by having include_in_all implicitly set to true.
You can use this option to control what is and isn’t included in _all. In the next listing, you’ll
create a mapping where you include in _all only two of the total of three data fields. Then
you’ll search in specific fields and in _all and compare the results.

Listing 3.6 Using include_in_all to store only some fields in _all

curl -XPUT 'localhost:9200/get-together/custom-all/_mapping' -d '{
 "custom-all": {
 "properties": {
 "name": { "type": "string" },
 #A
 "tags": { "type" : "string" },
 #A
 "organizer": {
 #B
 "type": "string",
 #B
 "include_in_all": false
 #B
 }
 }
 }
}'
curl -XPUT localhost:9200/get-together/custom-all/1 -d '{
 "name": "Elasticsearch Denver",
 "tags": "elasticsearch",
 "organizer": "Lee"
}'
curl 'localhost:9200/get-together/_refresh'
CUSTOM_ALL="localhost:9200/get-together/custom-all"
curl "$CUSTOM_ALL/_search?q=denver&pretty"
 #C
curl "$CUSTOM_ALL/_search?q=name:denver&pretty" #D
curl "$CUSTOM_ALL/_search?q=lee&pretty"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

74

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 #E
curl "$CUSTOM_ALL/_search?q=organizer:lee&pretty" #F

#A These are included in _all by default
#B You explicitly say you don't need this in _all
#C Returns result because the name field is in _all
#D Returns result because you can search in the specific field
#E Doesn’t return result because the organizer field isn’t included in _all
#F Returns result when you search in the specific field

Using include_in_all gives you flexibility not only in terms of saving space but also
regarding how your queries behave. As you saw in the previous example, if a user searches
without specifying a field, you might want to give back matches from the name and tags fields
and match organizer fields only when the user specifically asks for that. This prevents
unexpected results from appearing, if most customers think of a name or a tag when they give
a keyword.

The next set of predefined fields are those used to identify documents: _index, _type, _id
and _uid.

3.4.2 Identify your documents
To identify a document within the same index, Elasticsearch uses a combination of the
document’s type and ID, in the _uid field. The _uid field is made up from the _id and _type
fields that you always get when searching or retrieving documents:

% curl 'localhost:9200/get-together/group/1?fields&pretty'
{
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "1",
 "_version" : 1,
 "exists" : true
}

At this point you might wonder, “Why does Elasticsearch store the same data in two
places: you have _id, then _type, then _uid?”

Elasticsearch uses _uid internally for identification, and you don’t have any useful options
around it. In contrast, _id and _type are special fields you can search on, And you can
change their settings. To make them stored, set store to yes; to make them indexed or even
analyzed, change the index option. Table 3.2 shows the default settings for _id and _type:

Table 3.2 Default settings for _id and _type fields

Field name store value index value Observations

_id no no It’s not indexed and not analyzed. You can search on it, but
Elasticsearch uses _uid to give you the results.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

75

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

_type no not_analyzed It’s indexed, and it produces a single term. You can search
on it, but you can’t get it as a single field.

PROVIDING IDS FOR YOUR DOCUMENTS
You’ve seen here, and in chapter 2, that when you index a document, you need to tell
Elasticsearch the type and the index it belongs to. The document also needs an ID to uniquely
identify it within the type. That’s your _id field. There are three ways to specify IDs for your
documents:

• Manually add the ID when you index the document.

So far, you’ve mostly provided IDs manually as part of the URI. For example, to index a
document with ID 1st, you run something like this:

% curl -XPUT 'localhost:9200/get-together/manual_id/1st&pretty' -d '{
 "name": "Elasticsearch Denver"
}'

And you get back something like this:

{
 "_index" : "get-together",
 "_type" : "manual_id",
 "_id" : "1st",
 "_version" : 1
}

You can see in the reply that the _id field returns the value you provided.

• Configure Elasticsearch to take the ID from a field within your document.

The second way to get IDs for your documents is to have Elasticsearch pick the ID from
a field within your document. This is useful if you already have a field with unique
values, like a barcode for items in an online shop. If you use that as the _id as well,
you’ll have a quick way of getting an item if you know the barcode, the index, and the
type: you retrieve the document, and no search is required. Also, you have a reliable
way of identifying items if you need to update their content. We’ll look at updating
documents later in this chapter.

To get IDs from the barcode field, you first need to put that field name in the path
option of your _id field. This makes Elasticsearch look for an ID in the barcode field:

% curl -XPUT localhost:9200/online-shop/barcode_id/_mapping -d '{
 "barcode_id": {
 "_id": {
 "path": "barcode"
 }
 }
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

76

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

TIP For the command to work without an error, create the online-shop index first: curl -XPUT
'localhost:9200/online-shop/'

To index an item with the barcode as the ID, omit the ID from the URI, and use an
HTTP POST request instead:

% curl -XPOST 'localhost:9200/online-shop/barcode_id/?pretty' -d '{
 "barcode": "abcd",
 "name": "Promotional T-Shirt"
}'

And you get back a reply like this:

{
 "_index" : "online-shop",
 "_type" : "barcode_id",
 "_id" : "abcd",
 "_version" : 1
}

You can still use the reply to see that the _id field is what you provided in the barcode
field.

• Configure Elasticsearch to automatically generate a unique ID for you.

The final approach to creating document IDs is to rely on Elasticsearch to generate
unique IDs for you. This is useful if you don’t have an unique ID already, or you don’t
need to identify documents by a certain property. Typically, this is what you do when
you index application logs: they don’t have a unique property to identify them, and
they’re never updated.

To have Elasticsearch generate the ID, use HTTP POST and omit the ID, like you did
with barcodes. The difference is that you don’t need to configure the path property for
the _id field.

% curl -XPOST 'localhost:9200/logs/auto_id/?pretty' -d '{
 "message": "I have an automatic id"
}'
The reply should look similar to the following:
{
 "_index" : "logs",
 "_type" : "auto_id",
 "_id" : "RWdYVcU8Rjyy8sJPobVqDQ",
 "_version" : 1
}

As was the case with the other methods, you can see the ID that was generated in the
JSON reply.

STORING THE INDEX NAME INSIDE THE DOCUMENT
To have Elasticsearch store the index name in the document, along with the ID and the type,
use the _index field.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

77

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As with _id and _type, you can see _index in the results of a search or a GET request,
but, as with _id and _type, what you see there doesn’t come from the field contents: _index
is disabled by default.

Elasticsearch knows which index each result came from, so it can show an _index value
there, but, by default, you can’t search for _index yourself. The following command shouldn’t
find anything:

% curl 'localhost:9200/_search?q=_index:get-together'

To enable _index, set enabled to true. The mapping might look like this:

% curl -XPUT 'localhost:9200/get-together/with_index/_mapping' -d '{
 "with_index": {
 "_index": { "enabled": true }
 }
}'

Then, if you add documents to this type and rerun the previous search, you should find
your new documents.

The _id, _type and _index fields help you search in properties that define your
documents: each of them belongs to a type in an index and has an ID. Next, we’ll look at
predefined fields that add new properties to your documents, such as their size.

3.4.3 Adding new properties to your documents
Using _size, you can store the size of the original JSON document that you’re indexing. This is
useful if the size of your documents might be a search criterion. For example, if you’re
indexing blog articles, you might be interested in those that are small enough to fit in a single
page.

By default, _size is disabled, but in the following listing you’ll enable it, by setting enabled
to true, to get it indexed and be able to search for documents of a certain size. You’ll also
store it, by setting store to yes, so you can see the size of each document.

In the following listing, you’ll enable and store the _size field, so you can search for it and
show its contents.

Listing 3.7 Indexing and storing the JSON document size with the _size field

curl -XPUT localhost:9200/blog/sized/_mapping -d '{
 "sized": {
 "_size": {
 "enabled": true, #A
 "store": "yes" #B
 }
 }
}'
echo '{"title": "First post"}' > test_size.json #C
du -b /tmp/test_size.json #C
curl -XPUT localhost:9200/blog/sized/1 --data-binary @test_size.json #D
curl 'localhost:9200/blog/_refresh'
curl 'localhost:9200/blog/sized/1?fields=_size' #E
curl 'localhost:9200/blog/_search?q=_size:24' #F

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

78

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
mailto:@test_size.json
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Makes it indexed, thus searchable
#B Makes it stored, thus retrievable
#C Stores the JSON in a file, then checks its size to ensure it’s 24 bytes
#D Sends the file contents as data to index the document
#E Retrieving _size should show 24
#F Searching for 24-byte documents should match _size

_TIMESTAMP
Like _size, you can enable the _timestamp field to provide additional data for categorizing
your documents. Enabling it makes Elasticsearch write the time when the document was
indexed. By setting enabled to true, you can get timestamp indexed, so you can search on it
afterward. This helps if you want to search only for freshly defined events, for example:

% curl -XPUT 'localhost:9200/get-together/timed_events/_mapping' -d '{
 "timed_events" : {
 "_timestamp" : { "enabled" : true }
 }
}'

You can also set store to yes, to store the timestamp value and make it retrievable. As
with _id, you can point _timestamp to extract the time from a field within your document by
using the path option.

As with any date field, you can specify a format for _timestamp. In the following listing,
you define a mapping for events where you enable _timestamp and make it point to the date
field of events. Finally, you index a sample album and search for it using the _timestamp field.

Listing 3.8 Using the _timestamp field

curl -XPUT 'localhost:9200/get-together/timed_events/_mapping' -d '{
 "timed_events": {
 "_timestamp": {
 "enabled": true,
 "path": "date"
 #A
 }
 }
}'
curl -XPUT 'localhost:9200/get-together/timed_events/1' -d '{
 "name": "Old Event",
 "date": "2009-06-22"
}'
curl 'localhost:9200/get-together/_refresh'
TIMED_EVENTS="localhost:9200/get-together/timed_events"
curl "$TIMED_EVENTS/_search?q=_timestamp=2009-06-22" #B

#A Takes the value from a field in the document
#B Searching for the same date string should match the document

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

79

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

_TTL FOR DOCUMENT LIFESPAN
In some situations, you might need to delete documents automatically after a specified
amount of time. Think about application logs or old events of your get-together site that might
not be relevant.

That’s what the _ttl field is for: you can enable it and specify an interval after which
documents are automatically deleted. A sample mapping looks like this:

curl -XPUT 'localhost:9200/get-together/expiring/_mapping' -d '{
 "expiring": {
 "_ttl": {
 "enabled":"true",
 "default": "1d"
 }
 }
}'

You can specify the expiry period in the default field in milliseconds, but Elasticsearch
automatically parses strings containing a number and a multiplier. For example, 1d for one
day in this example. For the multiplier, you can also use s (seconds), m (minutes) or h
(hours).

The value in the default field can be overridden by specifying a _ttl value inside the
document:

% curl -XPUT 'localhost:9200/get-together/expiring/1' -d '
{
 "name": "Fresh Event",
 "_ttl": "10d"
}'

If you test this feature with a value such as 1s, you may notice that documents aren’t
deleted immediately. That’s because, by default, Elasticsearch looks for expired documents
every minute, and then deletes them in bulk. To change the frequency of those searches, by
change the value of indices.ttl.interval in the configuration file. You can also change the
indices.ttl.bulk_size option to adjust the size of each bulk of expired documents that gets
deleted at a time. Bulk processing allows you to send multiple operations to Elasticsearch with
one request, making such operation faster. We talk about them in chapter 10, which is all
about performance. And doing your index, update, and delete operations in bulk rather than
one by one is one of the most important features for improving performance.

We’ve looked at how your documents are mapped in Elasticsearch so you can index them
in a way that suits your use case. Next, we’ll look at how you can modify documents that are
already indexed.

3.5 Updating existing documents
You may need to change an existing document for various reasons. Suppose you need to
relocate a get-together event to a different venue. You could index a different document to the
same “address” (index, type, and ID), but, as you might expect, you can update documents
by sending the changes you want Elasticsearch to apply.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

80

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The update API in Elasticsearch allows you to send the changes you want to apply to a
document, and the API returns a reply indicating whether the operation succeeded or not. The
update process is shown in figure 3.4.

#A (top lane): Update request received; retrieve the existing document from the index
#B (middle lane): Make requested changes
#C (bottom lane): Reindex resulting document, and remove the old one

Figure 3.4 Updating a document involves retrieving it, processing it, reindexing it, and overwriting the
previous document.

As figure 3.4 illustrates, Elasticsearch does the following (from the top down):

• Retrieves the existing document—For that to work, you must enable the _source field,
otherwise Elasticsearch doesn’t know what the original document looked like.

• Applies the changes you specified—For example, if your document was

{"name": "Introduction to Elasticsearch", "date": "2013-04-17T19:00"}

and you wanted to shift the date forward by a day, the resulting document would be

{"name": "Introduction to Elasticsearch", "date": "2013-04-18T19:00"}

• Indexes the resulting document and removes the old one.

In this section, we’ll look at a few ways to use the update API and explore how to manage
concurrency via Elasticsearch’s versioning feature.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

81

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

3.5.1 Using the update API
Let’s look at how to update documents first. The update API exposes a few ways of doing that:

• Send a partial document to add or replace the same part from the existing document.
This is straightforward: you send one or more fields with their values and, after the
update is done, you expect to find them in the document.

• When sending partial documents or scripts, make sure that the document is created if
it doesn’t exist. You can specify the original contents of a document to be indexed if
one isn’t already there.

• Send a script to update the document for you. For example, in an online shop, you
might want to increase the amount of T-shirts you have in stock by a certain amount,
instead of setting it to a fixed number.

SENDING A PARTIAL DOCUMENT
The easiest way to update one or more fields is to send a partial document with the values
you need to set for those fields. To do that, you need to send this info though an HTTP POST
request to the _update endpoint of the document’s URL. The following command will work
after running populate.sh from the code samples:

% curl -XPOST 'localhost:9200/get-together/event/103/_update' -d '{
 "doc": {
 "date": "2013-04-18T19:00"
 }
}'

This sets the fields you specify under doc to the values you provide, regardless of the
previous values or if these fields existed or not. If the entire document is missing, the update
operation will fail, complaining that the document is missing.

NOTE When updating, you need to keep in mind that there might be conflicts. For example, if
you’re changing the event’s date to the 18th of April, and a colleague changes it to the 19th of
April, one of those updates will be overridden by the other one. To control this, you can use
versioning, which will be covered later in this chapter.

CREATING DOCUMENTS THAT DON’T EXIST WITH UPSERT
To handle the situation when the updating document doesn’t exist, you can use upsert. You
might be familiar with this term from relational databases; the term is a portmanteau of
update and insert.

If the document is missing, you can add an initial document to be indexed in the upsert
section of the JSON. The previous command looks like this:

% curl -XPOST 'localhost:9200/get-together/event/103/_update' -d '
{
 "doc": {
 "date": "2013-04-18T19:00"
 },
 "upsert": {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

82

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "name" : "Introduction to Elasticsearch",
 "date": "2013-04-18T19:00"
 }
}'

UPDATING DOCUMENTS WITH A SCRIPT
Finally, let’s look at how to update a document using the values from the previous example.
Suppose you want to increment the price by 10. To do that, you use the same API, but instead
of providing a document, you provide a script. A script is typically a piece of code in the JSON
that you send to Elasticsearch, but it can also be an external script.

We’ll talk more about scripting in chapter 6 because you’ll most likely use scripts to make
your searches more relevant. For now, let’s look at three important elements of an update
script:

• The default scripting language is mvel (http://mvel.codehaus.org/). Its syntax is similar
to Java, but it’s easier to use for scripting.

• Because updating gets the _source of an existing document, changes it, then reindexes
the resulting document, your scripts alter fields within _source. To refer to _source,
use ctx._source, and to refer to a specific field, use ctx._source['field-name'].

• If you need variables, it’s recommended to define them separately from the script itself
under params. That’s because scripts need to be compiled, and once they’re compiled,
they get cached. Running the same script multiple times with different parameters
requires the script to be compiled only once. Subsequent runs take the existing script
from cache. This is faster than having different scripts because they all need
compilation.

In the following listing, let’s use an mvel script to increment the price of an Elasticsearch shirt
by 10.

Listing 3.9 Updating with a script

% curl -XPUT 'localhost:9200/online-shop/shirts/1' -d '

{
 "caption": "Learning Elasticsearch",
 "price": 15
}'
% curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "ctx._source.price += price_diff", #A
 "params": { #B
 "price_diff": 10 #B
 } #B
}'

#A mvel script increments the price field with the value from the price_diff variable
#B Optional params section for assigning values to variables used in the script

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

83

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://mvel.codehaus.org/
http://www.manning-sandbox.com/forum.jspa?forumID=871

You can see that ctx._source.price was used instead of the expected
ctx._source['price']. This is an alternative way to refer to the price field. It’s easier to use
with curl because escaping single quotes in shell scripts can be confusing.

Now that you’ve seen how you can update a document, let’s look at how you can manage
concurrency if multiple updates happen at the same time.

3.5.2 Implementing concurrency control through versioning
If multiple processes or threads are working with Elasticsearch at the same time, you could
encounter concurrency issues. As illustrated in figure 3.5, if two updates run at the same time,
it’s possible that one of the processes reindexes the document between the time when the
other process got the original document and applied its own changes. With no concurrency
control, the second reindex will cancel the changes of the first update.

#A (top lane) Update1 retrieves existing document (shirt1)
#B (second lane) While update1 is applying changes, concurrent update2 is retrieving the document
#C (third lane) Update1 finishes indexing the initial document with its changes
#D (last lane) Without concurrency control, update2 is unaware of the update1 changes and overrides

them

Figure 3.5 Without concurrency control, changes can get lost.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

84

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Fortunately, Elasticsearch supports concurrency control by using a version number for each
document. The initially indexed document is version 1. When you reindex it, though an update
or another index operation with the same ID, the version number is incremented.

To see how it works, let’s replicate a process similar to the one shown in figure 3.5using
the code in listing 3.10:

• You index a document, and then update it (update1).
• Update1 starts in background and includes a waiting time (sleep).
• During that sleep, you issue another update (update2) command that modifies the

document. This change occurs between update1’s fetch of the original document and its
reindexing operation.

• Instead of canceling the changes of update2, update1 fails, because the document is
already at version 2.

Listing 3.10 Two concurrent updates managed with versioning

% curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "Thread.sleep(10000); ctx._source.price = 2" #A
}' &
% curl -XPOST 'localhost:9200/online-shop/shirts/1/_update' -d '{
 "script": "ctx._source.caption = \"Knowing Elasticsearch\"" #B
}'

#A Update1 waits 10 seconds and goes to background (&)
#B If update2 runs within 10 seconds, it forces update1 to fail because it increments the version number

Figure 3.6 is a graphical representation of what happens in this code.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

85

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 3.6 Concurrency control through versioning prevents one update from overriding another.

This kind of concurrency control is called optimistic because it allows parallel operations and
assumes that conflicts appear rarely, throwing errors when they do appear. This is opposed to
pessimistic locking, in which conflicts are prevented in the first place by blocking operations
that might cause conflicts.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

86

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

AUTOMATICALLY RETRYING AN UPDATE WHEN THERE’S A CONFLICT
When a version conflict appears, you can deal with it in your own application. If it’s an update,
you can try applying it again. But you can also make Elasticsearch reapply it for you
automatically by setting the retry_on_conflict parameter:

% SHIRTS="localhost:9200/online-shop/shirts"
% curl -XPOST "$SHIRTS/1/_update?retry_on_conflict=3" -d '{
 "script": "ctx._source.price = 2"
}'

USING VERSIONS WHEN YOU INDEX DOCUMENTS
Another way to update a document, without using the update API, is to index a new one to the
same index, type, and ID. This overwrites the existing document, and you can still use the
version field for concurrency control. To do that, set the version parameter in the HTTP
request. The value should be the version you expect the document to have. For example, if
you want to index a new T-shirt and also make sure you don’t override anything by accident,
set version=0:

% curl -XPUT 'localhost:9200/online-shop/shirts/2?version=0' -d '{
 "caption": "Learning Elasticsearch Versioning",
 "price": 2
}'

Elasticsearch throws an error if the document exists because the document has a version
other than 0. For other such operations, specify the version you expect the document to have:

% curl -XPUT 'localhost:9200/online-shop/shirts/2?version=1' -d '{
 "caption": "I Know about Elasticsearch Versioning",
 "price": 5
}'

Again, the operation fails if the current version is different than 1—whether the document
doesn’t exist or it has a higher version number.

With versions, you can index or update your documents safely. Next, let’s look at how you
can remove documents.

3.6 Deleting data
Now that you know how to send data to Elasticsearch, let’s look at what options you have for
removing some of what was indexed. If you’ve worked through the listings throughout this
chapter, you now have unnecessary data that’s waiting to be removed. We’ll look at a few
ways to remove data—or at least get it out of the way of slowing down your searches or
further indexing:

• Delete individual documents or groups of documents. When you do that, Elasticsearch
only marks them to be deleted, so they don’t show up in searches, and gets them out
of the index later, in an asynchronous manner.

• Delete complete indices. This is a particular case of deleting groups of documents. But
it differs in the sense that it’s easy to do performance-wise. The main job is to remove

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

87

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

all the files associated with that index, which happens almost instantly.
• Close indices. Although this isn’t about removing, it’s worth mentioning here. A closed

index doesn’t allow read or write operations, and its data isn’t loaded in memory. It’s
similar to removing data from Elasticsearch, but it remains on disk, and it’s easy to
restore ; you open the closed index.

3.6.1 Deleting documents
There are a few ways to remove individual documents, and we’ll discuss most of them here:

• Remove a single document by its ID. This is good if you have only one document to
delete, provided that you know its ID.

• Remove multiple documents in a single request. If you have multiple individual
documents that you want to delete, you can remove them all at once in a bulk request,
which is faster than removing one document at a time. We’ll cover bulk deletes in
chapter 12, along with bulk indexing and bulk updating.

• Remove a mapping type, with all the documents in it. This will effectively search and
remove all the documents you’ve indexed in that type, plus the mapping itself.

• Remove all the documents matching a query. This is similar to removing a mapping
type, in the sense that internally, a search is run to identify the documents that need to
be deleted. Only here you can specify any query you want, and the matching
documents will be deleted.

REMOVE A SINGLE DOCUMENT
To remove a single document, you need to send an HTTP DELETE request to its URL. For
example:

% curl -XDELETE 'localhost:9200/online-shop/shirts/1'

TIP You’ve used versions for indexing and updating, and you can use it for deletes to manage
concurrency. For example, let’s assume you sold all shirts of a certain type, and you want to
remove that document so it doesn’t appear in searches at all. But you might not know at that
time if a new transport arrived and the stock data has been updated. To accomplish this, add
version=1 as a parameter to your DELETE request. The document will be deleted only if it’s at
version 1.

REMOVE A MAPPING TYPE AND DOCUMENTS MATCHING A QUERY
You can also remove an entire mapping type, which removes the mapping itself, plus all the
documents indexed in that type. To do that, you provide the type’s URL to the DELETE
request:

% curl -XDELETE 'localhost:9200/online-shop/shirts

The tricky part about removing types is that the type name is treated like another field in
the documents. All documents of an index end up in the same shards regardless of the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

88

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

mapping type they belong to. When you issue the previous command, Elasticsearch has to
query for documents of that type, and then remove them. This is an important detail when it
comes to performance for removing types versus removing complete indices because
removing types typically takes longer and uses more resources.

In the same way you can query for all documents within a type and delete them,
Elasticsearch allows you to specify your own query for documents you want to delete through
an API called delete by query. Using the API is similar to running a query, except that the
HTTP request is DELETE, and the _search endpoint is now _query. For example, to remove all
documents that match “Elasticsearch” from the index get-together, you can run this
command:

% curl -XDELETE 'localhost:9200/get-together/_query?q=elasticsearch'

Similar to regular queries, which we cover in more detail in chapter 4, you can run a delete
by query on a specific type, on multiple types, everywhere in an index, in multiple indices or in
all indices. When you search in all indices, be careful when you run a delete by query.

TIP Besides being careful, you can use backups. We talk about backups in chapter 14, which is
all about administration.

3.6.2 Deleting indices
As you might expect, to delete an index, issue a DELETE request to the URL of that index:

% curl -XDELETE 'localhost:9200/get-together/'

You can also delete multiple indices, by providing a comma-separated list, or even delete
all indices by providing _all as the index name.

Deleting an index is fast because it’s mostly about removing the files associated to all
shards of that index. And deleting files on the file system happens fast. This is opposed to
when you delete individual documents. When you do that, they’re only marked as deleted.
They get removed when segments are merged. Merging is the process of combining multiple
small Lucene segments into a bigger segment.

On segments and merging
A segment is a chunk of the Lucene index (or a shard, in Elasticsearch terminology), which is

created when you’re indexing. Segments are never appended—only new ones are created as you
index new documents. Data is never removed from them because deleting only marks documents as
deleted. Finally, data never changes because updating documents implies reindexing.

When Elasticsearch is performing a query on a shard, Lucene has to query all its segments, merge
the results, and send them back—much like the process of querying multiple shards within an index.
As with shards, the more segments you have to go though, the slower the search.

As you may imagine, normal indexing operations create many such small segments. To avoid
having an extremely large number of segments in an index, Lucene merges them from time to time.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

89

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Merging some documents implies reading their contents, excluding the deleted documents, and
creating new and bigger segments with their combined content. This process requires resources—
specifically, CPU and disk I/O. Fortunately, merges run asynchronously, and Elasticsearch lets you
configure numerous options around them. We talk more about those options in chapter 12, where
you learn how to improve the performance of index, update, and delete operations.

3.6.3 Closing indices
Instead of deleting indices, you also have the option of closing them. If you close an index,
you won’t be able to read or write data from it with Elasticsearch until you open it again. This
is useful when you have flowing data, such as application logs. You’ll learn in chapter 12 that
it’s a good idea to store such flowing data in time-based indices, for example, creating one
index per day.

In an ideal world, you’d hold application logs forever, in case you needed to look back a
long time ago. On the other hand, having a large amount of data in Elasticsearch demands
increased resources. For this use case, it makes sense to close “old” indices. You’re unlikely to
need that data, but you don’t want to remove it, either.

To close the get-together index, send an HTTP POST request to its URL at the _close
endpoint:

% curl -XPOST 'localhost:9200/get-together/_close'

To open it again, you run a similar command, only the endpoint becomes _open:

% curl -XPOST localhost:9200/get-together/_open

Once you close an index, the only trace of it in Elasticsearch’s memory is its metadata,
such as name, and where shards are located. If you have enough disk space and you’re not
sure whether you’ll need to search in that data again, closing indices is better than removing
them. Closing them gives you the peace of mind that you can always reopen a closed index
and search in it again.

3.6.4 Reindexing sample documents
In chapter 2, you used the book’s code samples (https://github.com/dakrone/elasticsearch-in-
action) to index documents. Running populate.sh from these code samples removes the get-
together index you created in this chapter, and reindexes the sample documents.

If you look at both the populate.sh script and the mapping definition from mapping.json,
you’ll recognize various types of fields we discussed in this chapter.

Some of the mapping and indexing options, such as the analysis settings, are dealt with in
upcoming chapters. For now, run populate.sh to prepare the get-together index for chapter
4, which is all about searches. The code samples provide you with sample data to search on.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

90

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

3.7 Summary
• Mappings let you define fields in your documents and how those fields are indexed. We

say Elasticsearch is schema-free because mappings are extended automatically, but in
production you often need to take control over what is indexed, what is stored and
how.

• Most fields in your documents are core types, such as strings and numbers. The way
you index those fields has a big impact on how Elasticsearch performs and how
relevant your search results are. For example, the analysis settings, which we cover in
chapter 5.

• A single field can also be a container for multiple fields or values. We looked at arrays
and multi fields, which let you have multiple occurrences of the same core type in the
same field.

• Besides the fields that are specific to your documents, Elasticsearch provides
predefined fields, such as _source and _timestamp. Configuring these fields changes
some data that you don’t explicitly provide in your documents but has a big impact on
both performance and functionality. For example, you can decide whether you want the
original document to be stored or not.

• Because Elasticsearch stores data in Lucene segments that don’t change once they’re
created, updating a document implies retrieving the existing one, putting the changes
in a new document that gets indexed, and marking the old one as deleted.

• The removal of documents happens when the Lucene segments are asynchronously
merged. This is also why deleting an entire index is faster than removing one or more
individual documents from it— it only implies removing files on disk with no merging.

• Throughout indexing, updating, and deleting, you can use document versions to
manage concurrency issues. With updates, you can tell Elasticsearch to retry
automatically if an update fails because of a concurrency issue.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

91

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

4
Searching your data

This chapter covers

• The structure of an Elasticsearch query and response
• Working with Elasticsearch filters and how they differ from queries
• Filter bitsets and caching
• Using queries and filters that Elasticsearch supports

Now that we’ve explored how you get data into Elasticsearch, let’s cover how you get data out
of Elasticsearch: by searching. After all, what good is indexing your data into a search engine
if you can’t search through it? Fortunately, Elasticsearch provides a rich API for searching
through data, running the gamut of Lucene’s search capability. Because of the format
Elasticsearch allows for constructing queries, there are limitless possibilities for how queries
can be built. The best way to tell which query to use for your data is to experiment, so don’t
be afraid to try out each query on your project’s data to figure out which one suits your needs
best.

Searchable data
In this chapter, you’ll again use the dataset formed around the get-together website we’ve touched
on in previous examples. This dataset contains two different types of documents: groups and events.
To follow along and perform the queries yourself, download and run the populate.sh script to
populate an Elasticsearch index.

To download the script, see the source code for the book at
https://github.com/dakrone/elasticsearch-in-action

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

92

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

To start off, we discuss the things common to all queries and results so you’ll have an
understanding of what a query and the result of a query look like in general. We then move on
to discussing filters and how they differ from queries followed by a look at some of the most
commonly used filters and queries. If you’re wondering about the details of how Elasticsearch
calculates the score for documents, don’t worry, we discuss that in chapter 7, where we talk
about searching with relevancy. Finally, we provide a quick-and-dirty guide to help you
choose which type of query to use for a particular application. Make sure to check it out if
there seem to be too many types of queries to keep straight!

Before we start, let’s revisit what happens when you perform a search in Elasticsearch (see
figure 4.1). The REST API search request is first sent to the node you choose to connect to,
which, in turn, sends the search request to all shards (either primary or replica) for the index
or indices being queried. When enough information has been collected from all shards to sort
and rank results, only the shards containing the document content that will be returned are
asked to return the relevant content.

Figure 4.1 How a search request is routed

This search routing behavior is configurable; the default behavior is shown in figure 4.1. We
look at how to change it later in this chapter. For now, let’s look at the basic structure that all
Elasticsearch queries share.

4.1 Structure of a query
Elasticsearch queries are JSON requests that get sent to the server, and because all queries
follow the same format, it’s helpful to understand the things that can be changed for each
query.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

93

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

4.1.1 Specifying a search scope
All REST search requests use the _search REST endpoint and can be either a GET request or a
POST request. A search can be limited to a number of indices, types, or the entire cluster by
specifying the names of the indices or types with the URL. The following listing provides
example search URLs that limit the scope of searches.

Listing 4.1 Limiting the search scope in the URL

% curl 'localhost:9200/_search' -d '...' #A
% curl 'localhost:9200/get-together/_search' -d '...' #B
% curl 'localhost:9200/get-together/event/_search' -d '...' #C
% curl 'localhost:9200/_all/event/_search' -d '...' #D
% curl 'localhost:9200/*/event/_search' -d '...' #D
% curl 'localhost:9200/get-together,other/event,group/_search' -d '...' #E
% curl 'localhost:9200/+get-toge*,-get-together/_search' -d '...' #F

#A Searches the entire cluster
#B Searches the get-together index
#C Searches the event type in the get-together index
#D Searches all event types in all indices
#E Searches the event and group types in the get-together and other indices
#F Searches all indices that start with get-toge, but not the get-together index

For the best performance, limit your queries to the smallest number of indices and types
possible because anything Elasticsearch doesn’t have to search means faster responses.

4.1.2 Specifying the body of the query
Once you’ve selected the indices to search, the next step is to determine the body, or the
search part, of the query. Before we get into the different queries that Elasticsearch supports,
let’s talk about the four elements that most queries share:

• From—Specifies the result number to start from
• Size—Specifies page size
• Fields—Specifies one or more fields that should be returned with the results
• Sort—Specifies how to sort results

Together, these make up the from, size, fields, and sort keys in a JSON query.

RESULTS START AND PAGE SIZE
The aptly named from and size fields are sent to specify the offset to start results from and
the size of each “page” of results. For example, if you send a from value of 7 and a size of 5,
Elasticsearch will send the 8th, 9th, 10th, 11th, and 12th results back (because the from
parameter starts at 0, specifying 7 starts at the 8th result). If these two parameters aren’t
sent, Elasticsearch defaults to starting at the first result (the “zero-th”), and sends 10 results
with the response.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

94

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

You can either send these parameters with the body of the request or specify them as URL
parameters. Both methods are shown in the following listing, which searches for the second
page of the get-together index where the organizer is “Lee”.

Listing 4.2 Paginating results using from and size

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match": {
 "organizer": "Lee"
 }
 },
 "from": 10, #A
 "size": 10 #B
}'

% curl 'localhost:9200/get-together/_search?from=10&size=10' -d '{ #C
 "query": {
 "match": {
 "organizer": "Lee"
 }
 }
}'

#A Returns results starting from the tenth result
#B Returns a total of 10 results
#C The same request with from and size sent as parameters in the URL instead of the request body

Other than noticing the "query" section, which is an object in every query, don’t worry about
the "match" section yet, we talk about it in section 4.3.

FIELDS RETURNED WITH RESULTS
The next element that all queries share is the list of fields Elasticsearch should return for each
matching document. This is specified by sending the fields option with the request (either as
a field in the JSON search request or as a URL parameter). If no fields are specified with the
request, Elasticsearch returns either the entire _source of the document by default, or, if the
_source isn’t stored, only the metadata about the matching document: _id, _type, _index,
and _score.

Here the previous query is used, returning the name and description fields of each
matching group:

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match": {
 "organizer": "Lee"
 }
 },
 "fields": ["name", "description"] #A
}'

#A Returns the name and description fields with the search response

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

95

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

SORT ORDER FOR RESULTS
The last element most searches include is the sort order for the results. If no sort order is
specified, Elasticsearch returns matching documents sorted by the _score value descending,
with the most relevant (highest scoring) documents first.

To sort fields in either ascending or descending order, specify a map instead of a field. You
can sort on any number of fields by specifying a list of fields or field maps in the sort value.
For example, using the previous organizer search, you can return results sorted first by
creation date, starting with the oldest; then by the name of the get-together group, in reverse
alphabetical order; and finally by the _score of the result, as shown in the following listing.

Listing 4.3 Results sorted by date (ascending), name (descending), and _score

% curl 'localhost:9200/get-together/_search' -d '{
 "query": {
 "match": {
 "organizer": "Lee"
 }
 },
 "sort": [
 {"created_on": "asc"}, #A
 {"name": "desc"}, #B
 "_score" #C
}'

#A Sorts first by the creation date, starting from the oldest to newest
#B Then sorts by name of the group, in reverse alphabetical order
#C And, finally, sorts by the relevancy of the result (its _score)

To specify the sort order as parameters in the URL, specify multiple sort order fields in a
comma-separated list in the sort parameter. For example, to specify the previous search with
the fields as part of the URL, you’d use:

% curl 'localhost:9200/_search?sort=created_on:asc,name:desc,_score' ...

This is handy when testing things at the command line, but in most cases you’ll want to
send the sort option (as well as the from, size, and fields options) as part of the request.

THE FOUR ELEMENTS IN ACTION
Now that we’ve covered the four query elements, here’s an example of a query that uses them
all.

Listing 4.4 Query with all four elements: scope, pagination, fields, and sort order

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "match_all": {}
 },
 "from": 0, #A
 "size": 10, #B
 "fields": ["name", "organizer", "description"], #C

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

96

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "sort": [{"created_on": "desc"}] #D
}'

#A Starts from the first (zeroth) result
#B Returns a total of 10 results
#C Includes the name of the group, the organizer, and description of the group
#D Sorts by the created_on field, descending

Next, let’s look at the structure of the search response.

4.1.3 Understanding the structure of a response
Let’s look at an example search and see what the response looks like. The next listing
searches for groups about “elasticsearch”.

Listing 4.5 Example search request and response

% curl 'localhost:9200/_search?q=elasticsearch&fields=_source,name,tags'
{
 "_shards": {
 "failed": 0, #A
 "successful": 2, #A
 "total": 2 #A
 },
 "hits": {
 "hits": [#B
 {
 "_id": "3", #C
 "_index": "get-together", #D
 "_score": 0.9066504, #E
 "_source": { #F
 "created_on": "2012-08-07", #F
 "description": "Elasticsearch group for ES users of all knowledge

levels", #F
 "location": "San Francisco, California, USA", #F
 "members": [#F
 "Lee", #F
 "Igor" #F
], #F
 "name": "Elasticsearch San Francisco", #F
 "organizer": "Mik", #F
 "tags": [#F
 "Elasticsearch", #F
 "big data", #F
 "lucene", #F
 "open source" #F
] #F
 }, #F
 "_type": "group", #G
 "fields": {
 "name": "Elasticsearch San Francisco", #H
 "tags": [#H
 "Elasticsearch", #H
 "big data", #H
 "lucene", #H
 "open source" #H
] #H

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

97

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 },
 {
 ...
 }
],
 "max_score": 0.9066504, #I
 "total": 2 #J
 },
 "timed_out": false,
 "took": 5 #K
}

#A The number of shards that responded to this request, successfully or unsuccessfully
#B The response contains a hits key that contains a hits array
#C The ID of the result document
#D Index of the result document
#E Relevancy score for this result
#F Source of the document is returned if _source is stored and specified in the fields parameter
#G Elasticsearch type of the result document
#H Other fields that were requested (name and tags in this example)
#I Maximum score of all documents for this search
#J Total number of matching results for the search
#K Time the request took, in milliseconds

Usually, you wouldn’t ask for both the fields and the _source together because you can
easily get any field from the _source map, but to show how the response comes back, we
asked for both in this case. Remember that if you don’t store either the _source of the
document or the fields, you won’t be able to retrieve the value from Elasticsearch!

Now that you’re familiar with the common elements of a search, there’s one more topic we
need to talk about before getting to types of searches, and that’s filters.

4.2 Working with filters
Filters are similar to the queries we discuss in this chapter, but they differ in how they affect
the scoring and performance of many searching actions. Rather than computing the score for
a particular term as queries do, a filter on a search is a simple binary “does this document
match this query” yes-or-no answer. Figure 4.2 shows the main difference between queries
and filters.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

98

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 4.2 Filters require less processing and are cacheable because they don’t calculate the score.

Because of this difference, filters can be faster than using a regular query, and they can
also be cacheable. A query using a filter looks similar to a regular query, but the query is
replaced with a "filtered" map that contains the original query and a filter to be applied, as
shown in the next listing.

Listing 4.6 Query using a filter

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "filtered": { #A
 "query": {
 "match": { #B
 "description": "search" #B
 } #B
 },
 "filter": { #C
 "term": { #C
 "tags": "lucene" #C
 } #C
 } #C
 }
 }
}'

#A Query type, which, in this case, specifies a query with a filter attached
#B The query searches for groups with “search” in the description
#C The additional filter limits the query to documents that have the tag lucene

Here, a regular query for groups matching “search” is used as the query, but in addition to the
query for the word “search”, a filter is used to limit the documents. Inside this particular
filter section, a term filter is being applied for all documents that have the tag lucene.
Behind the scenes, Elasticsearch constructs what is called a bitset, which is a binary set of bits

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

99

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

denoting whether the document matches this filter. Figure 4.3 shows what this bitset looks
like.

Figure 4.3 Filter results are cached in bitsets making subsequent runs much faster.

After constructing the bitset, Elasticsearch can now use it to filter (hence the name!) out
the documents that it shouldn’t be searching based on the query part of the search. Because
of this, filtering can be much faster than combining the entire query into a single search.
Depending on what kind of filter is used also, Elasticsearch can cache the results in a bitset, so
if the filter is used for another search, it doesn’t have to be calculated! All of this translates
into faster searches with filters. Therefore, make parts of your query into filters if you can.

We’ll revisit bitsets to explain the details of how they work and how they affect
performance in chapter 11, which discusses how to speed up searches.

NOTE How do you determine what should be a filter and what shouldn’t? If the part of the query
in question needs to affect the score (relevancy) of the result, it should be part of the regular
query. Otherwise, it should be a filter.

4.2.1 Filter caching
As you learned, filters allow Elasticsearch to generate a bitset for the documents that match,
which can be then cached. Some of these bitsets are automatically cached for you by default,
when specific filters are used. Other types of filters aren’t automatically cached. Additionally,
Elasticsearch gives you the ability to manually specify whether a filter should be cached.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

100

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

FILTERS CACHED BY DEFAULT
The previous filter is a term filter, which filters based on a specific term in the document. The
term, terms, prefix, and range filters are all cached by default.

FILTERS NOT CACHED BY DEFAULT
The types of filters not cached by default include the following:

• any of the geo filters
• the numeric_range filter
• filters that use custom scripts

Additionally, filters can be combined with the bool, and, or and not filters, which aren’t
themselves cached, but each individual part may or may not be cached depending on its type.

To manually specify a filter that should be cached, set the _cache option to true when
sending the filter, similar to the following:

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match": {
 "description": "search"
 }
 },
 "filter": {
 "script": {
 "script": "doc[\"tags\"].values.length > 2",
 "_cache": true #A
 }
 }
 }
 }
}'

#A Setting the _cache option to true tells Elasticsearch to cache this filter

If the filter were to be gigantic, say, thousands of terms in a terms filter, you could also
specify the _cache_key key at the same level as the _cache key, which is the key
Elasticsearch should store the cache under. Normally Elasticsearch stores the cache with the
same name as the contents of the filter (something like "terms filter for tags 'search,' 'lucene,'
'elasticsearch,' and so on"), which means a filter with a large number of terms could take up
more memory than is needed. We discuss the _cache and _cache_key options in chapter 13
when we talk about getting more performance out of your queries.

Now that you understand what filters are, we’ll cover several different types of filters and
queries as well as run some searches against data.

4.3 Working with match and filter queries
Although there are a number of ways to query for things in Elasticsearch, some may be better
than others, depending on how the data is stored in your index. In this section, you learn the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

101

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

different types of queries Elasticsearch supports and try out an example of how to use each
query. We assess the pros and cons of using each query, and provide any performance notes
about each one so you can determine which query best fits your data.

Elasticsearch has queries ranging from the more basic, such as the term and prefix
queries, to the more complex, such as the query_string and match_phrase queries.
Elasticsearch also allows you to combine an arbitrary number of queries using the bool query
by itself as well as with the and, or, and not filters.

You’ve already seen the filtered query type, and most (although not all!) queries also
have a filter equivalent. We’ll mention that for each query type as we go, but keep in mind
that queries can be nested depending on whether you’re using filters.

Let’s start with the easiest queries, beginning with the match_all query.

4.3.1 Match_all query
I’ll give you a guess as to what this query does. That’s correct! It matches all documents. The
match_all query is useful when you want to use a filter instead of a query (perhaps if you
don’t care about the score of documents at all) or you want to return all documents among the
indices and types you’re searching. The query looks like this:

% curl 'localhost:9200/_search' -d '
{
 "query" : {
 "match_all" : {}
 }
}'

To use a filter for a search instead of any regular query parts, the query looks something
like this (with the filters omitted):

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 ... filter details ...
 }
 }
 }
}'

Simple, huh? Not too useful, though, for a search engine, because users rarely search for
everything. Let’s look at a query that’s a bit more useful, next.

4.3.2 Query_string query
In chapter 2, you used the query_string query to see how easy it is to get an Elasticsearch
server up and running, but we’ll cover it again here in its entirety so you can see how it
compares to the other queries.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

102

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As shown in the following listing, a query_string search can be performed either from the
URL of the request or sent in a request body. In this example, you search for documents that
contain “nosql”.

Listing 4.7 Example query_string search

% curl -XGET 'localhost:9200/_search?q=nosql&pretty' #A
{
 "_shards": {
 "failed": 0,
 "successful": 2,
 "total": 2
 },
 "hits": {
 "hits": [
 {
 "_id": "4",
 "_index": "get-together",
 "_score": 0.3728585,
 "_source": {
 "created_on": "2010-04-02",
 "description": "Come learn and share your experience with nosql &

big data technologies, no experience required",
 "location": "Boulder, Colorado, USA",
 "members": [
 "Greg",
 "Bill"
],
 "name": "Boulder/Denver big data get-together",
 "organizer": "Andy",
 "tags": [
 "big data",
 "data visualization",
 "open source",
 "cloud computing",
 "hadoop"
]
 },
 "_type": "group"
 }
],
 "max_score": 0.3728585,
 "total": 1
 },
 "timed_out": false,
 "took": 2
}

% curl -XPOST "http://localhost:9200/_search?pretty" -d'
{
 "query" : { #B
 "query_string" : { #B
 "query" : "nosql" #B
 }
 }
}'
{
 "took" : 135,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

103

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://localhost:9200/_search?pretty
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "timed_out" : false,
 "_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 0.3728585,
 "hits" : [... exactly the same results ...]
 }
}

#A A query_string search sent as a URL parameter
#B The same query_string search sent as the body of a request

By default, a query_string query searches the _all field, which, if you recall from chapter 3,
is made up of all the fields combined together. This can be changed by either specifying a field
with the query, such as description:nosql, or by specifying a default_field with the
request, as seen in this next listing.

Listing 4.8 Specifying a default_field for a query_string search

% curl -XPOST 'localhost:9200/_search' -d'
{
 "query" : {
 "query_string" : {
 "default_field" : "description", #A
 "query" : "nosql" #A
 }
 }
}'

#A Because no field is specified in the query, the default field (description) is used

As you may have guessed, this syntax offers more than searching for a single word. Under
the hood, this is the entire Lucene query syntax, which allows combining searching different
terms with Boolean operators like AND and OR, as well as excluding documents from the results
using the minus sign (-) operator. The following query searches for all groups with “nosql” in
the name but without “mongodb” in the description:

name:nosql AND -description:mongodb;

To search for all search and lucene groups created between 1999 and 2001, you could use
with the following:

(tags:search OR tags:lucene) AND created_on:[1999-01-01 TO 2001-01-01]

NOTE Refer to http://www.lucenetutorial.com/lucene-query-syntax.html for a full example of
syntax the query_string query supports.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

104

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.lucenetutorial.com/lucene-query-syntax.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

QUERY_STRING CAUTIONS
Although the query_string query is one of the most powerful queries available to you in
Elasticsearch, it can sometimes be one of the hardest to read and easily extend. It may be
tempting to allow your users the ability to specify their own queries with this syntax, but
consider the difficulty in explaining the meaning of complex queries such as this:

name:search^2 AND (tags:lucene OR tags:"big data"~2) AND -description:analytics
AND created_on:[2006-05-01 TO 2007-03-29]

Suggested replacements for the query_string query include the term, terms, match, or
multi_match queries, all of which allow you to search for strings within a field or fields in a
document.

4.3.3 Term query
A term query and filter are some of the simplest queries that can be performed, allowing you
to specify a field and term to search for within your documents. Note that because the term
being searched for isn’t analyzed, it must match a term in the document exactly for the result
to be found. We’ll cover how exactly tokens, which are individual pieces of text indexed by
Elasticsearch, get analyzed in chapter 5. If you’re familiar with Lucene, it might be helpful to
know that the term query maps directly to Lucene’s TermQuery.

The following listing shows a term query that searches for groups with the elasticsearch
tag.

Listing 4.9 Example term query

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "term": {
 "tags": "elasticsearch"
 }
 },
 "fields": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "3",
 "_index": "get-together",
 "_score": 1.0769258,
 "_type": "group",
 "fields": {
 "name": "Elasticsearch San Francisco",
 "tags": [
 "Elasticsearch", #A
 "big data",
 "lucene",
 "open source"
]
 }
 },

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

105

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 {
 "_id": "2",
 "_index": "get-together",
 "_score": 0.8948604,
 "_type": "group",
 "fields": {
 "name": "Elasticsearch Denver",
 "tags": [
 "denver",
 "elasticsearch", #A
 "big data",
 "lucene",
 "solr"
]
 }
 }
],
 ...
}

#A Because these two results contain the word elasticsearch in the tags, they’re returned

Like the term query, a term filter can be used when you want to limit the results to documents
that contain the term, but without affecting the score. Compare the scores of the documents
in the previous listing with the scores in the following listing: you’ll notice that the filter
doesn’t bother calculating any score, setting all to 1.0:

Listing 4.10 Example term filter

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": { #A
 "query": { #A
 "match_all": {} #A
 }, #A
 "filter": { #A
 "term": { #A
 "tags": "elasticsearch" #A
 } #A
 } #A
 } #A
 },
 "fields": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "3",
 "_index": "get-together",
 "_score": 1.0, #B
 "_type": "group",
 "fields": {
 "name": "Elasticsearch San Francisco",
 "tags": [
 "Elasticsearch",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

106

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "big data",
 "lucene",
 "open source"
]
 }
 },
 {
 "_id": "2",
 "_index": "get-together",
 "_score": 1.0, #B
 "_type": "group",
 "fields": {
 "name": "Elasticsearch Denver",
 "tags": [
 "denver",
 "elasticsearch",
 "big data",
 "lucene",
 "solr"
]
 }
 }
]
 ...
}

#A The same query as before but using a filter this time
#B The document scores are now constant because a filter was used instead of a query

4.3.4 Terms query
Similar to the term query, the terms query (note the s!) can search for multiple terms in a
document’s field. For example, the following listing searches for groups by a tag matching
either jvm or hadoop.

Listing 4.11 Searching for multiple terms with the terms query

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "terms": {
 "tags": ["jvm", "hadoop"] #A
 }
 },
 "fields": ["name", "tags"]
}'
{
 ...
 "hits": [
 {
 "_id": "1",
 "_index": "get-together",
 "_score": 0.33779633,
 "_type": "group",
 "fields": {
 "name": "Denver Clojure",
 "tags": [
 "clojure",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

107

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "denver",
 "functional programming",
 "jvm",
 "java"
]
 }
 },
 {
 "_id": "4",
 "_index": "get-together",
 "_score": 0.22838624,
 "_type": "group",
 "fields": {
 "name": "Boulder/Denver big data get-together",
 "tags": [
 "big data",
 "data visualization",
 "open source",
 "cloud computing",
 "hadoop"
]
 }
 }
 ...
}

#A Multiple terms to search for

To force a minimum number of matching terms to be in a document before it matches the
query, specify the minimum_match parameter:

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "terms": {
 "tags": ["jvm", "hadoop", "lucene"],
 "minimum_match": 2
 }
 }
}'

If you’re thinking, “Wait! That’s pretty limited!” You’re probably also wondering what
happens when you need to combine multiple queries into a single query. Before we proceed
too much further, let’s discuss how to do that, which leads us straight into the bool query.

4.3.5 Combining queries
After learning about and using different types of queries, you’ll likely find yourself needing to
combine query types; this is where Elasticsearch’s Bool query comes in.

BOOL QUERY
The Bool query allows you to combine any number of queries into a single query by specifying
a query clause that indicates which parts must, should, or must not match the data in your
Elasticsearch index:

• If you specify part of a Bool query must match, only results matching that query (or

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

108

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

queries) are returned.
• Specifying a part of a query should match means that a specified number of the

clauses must match for a document to be returned.
• If no must clauses are specified, at least one should clause has to match for the

document to be returned.
• Finally, the must_not clause causes matching documents to be excluded from the result

set.

Table 4.1 lists the three clauses and their binary counterparts.

Table 4.1 Bool query clause types

Bool query clause Binary equivalent Meaning

must To combine multiple clauses,
use a binary and (query1
AND query2 AND query3).

Any searches in the must clause must match the
document;

must_not Any searches in the must_not clause must not be
part of the document; multiple clauses are combined
in a binary not manner (NOT query1 AND NOT
query2 AND NOT query3)

should Searches in the should clause may or may not
match a document, but at least the
minimum_should_match parameter number of
them should match (defaults to 1); similar to a binary
or (query1 OR query2 OR query3)

Understanding the difference between must, should, and must_not may be easier through
example. In the following listing, we search for events that were attended by David, and must
be attended by either Clint or Andy, and must not be older than June 30, 2013.

Listing 4.12 Combining queries with a Bool query

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "bool": {
 "must": [
 { #A
 "term": { #A
 "attendees": "david" #A
 } #A
 } #A

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

109

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

],
 "should": [
 { #B
 "term": { #B
 "attendees": "clint" #B
 } #B
 }, #B
 { #C
 "term": { #C
 "attendees": "andy" #C
 } #C
 } #C
],
 "must_not": [
 { #D
 "range" :{ #D
 "date": { #D
 "lt": "2013-06-30T00:00" #D
 } #D
 } #D
 } #D
],
 "minimum_should_match": 1 #E
 }
 }
}'
{
 "_shards": {
 "failed": 0,
 "successful": 2,
 "total": 2
 },
 "hits": {
 "hits": [
 {
 "_id": "110",
 "_index": "get-together",
 "_score": 0.56109595,
 "_source": {
 "attendees": [
 "Andy",
 "Michael",
 "Ben",
 "David"
],
 "date": "2013-07-31T18:00",
 "description": "Discussion about the Microsoft Azure cloud and

HDInsight.",
 "host": "Andy",
 "location": {
 "geolocation": "40.018528,-105.275806",
 "name": "Bing Boulder office"
 },
 "title": "Big Data and the cloud at Microsoft"
 },
 "_type": "event"
 }
],
 "max_score": 0.56109595,
 "total": 1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

110

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 },
 "timed_out": false,
 "took": 67
}

#A Query that must match resulting documents
#B First query that should match documents
#C Second query that should match documents
#D Query that must not match resulting documents
#E Minimum number of should clauses that have to match a document to return it as a result

BOOL FILTER
The filter version of the Bool query acts almost exactly like the query version, but instead of
combining queries, it combines filters. The filter equivalent of the previous example is shown
in the following listing.

Listing 4.13 Combining filters with the Bool filter

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "bool": {
 "must": [
 {
 "term": {
 "attendees": "david"
 }
 }
],
 "should": [
 {
 "term": {
 "attendees": "clint"
 }
 },
 {
 "term": {
 "attendees": "andy"
 }
 }
],
 "must_not": [
 {
 "range" :{
 "date": {
 "lt": "2013-06-30T00:00"
 }
 }
 }
]
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

111

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 }
 }
}'

As you saw in the Bool query (listing 4.12), the minimum_should_match setting of the query
version lets you specify the minimum number of should clauses that have to match for a
result to be returned. In listing 4.12, the default value of 1 is used. This query is slightly
contrived, but it includes all three of the boolean query options: must, should, and must_not.
You could rewrite this query in a better form like so:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "attendees": "david"
 }
 },
 {
 "range" :{
 "date": {
 "gt": "2013-06-30T00:00"
 }
 }
 }

],
 "should": [
 {
 "terms": {
 "attendees": ["clint", "andy"]
 }
 }
]
 }
 }
}'
... same results as the previous query ...

Note that this query is smaller than the previous query. By inverting the range query from
lt (less than) to gt (greater than), you can move it from the must_not section to the must
section. You can also collapse the two separate should queries into a single terms query
instead of two term queries. Elasticsearch has a flexible query language, so don’t be afraid to
experiment with how queries are formed as you’re sending them to Elasticsearch!

With the Bool query and filter under your belt; you can combine any number of queries
and filters together. We can now return to the other types of queries that Elasticsearch
supports. You already know about the term query, but what if you want to analyze the data
that you’re sending to Elasticsearch? The match query is then exactly what you need.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

112

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

4.3.6 Match and multi_match queries
The match and multi_match queries behave similarly to the term query, except that they
analyze the field being passed in. Don’t worry if you’re unsure what we mean by analyze, as
we’ll be covering analyzing your data in chapter 5.

MATCH QUERY
Similar to the term query, the match query is a hash map, containing the field you’d like to
search as well as the string you want to search for, which can be either a field, or the special
_all field to search all fields at once. Here’s an example match query, searching for groups
where name contains “elasticsearch”:

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "match": {
 "name": "elasticsearch"
 }
 }
}'

The match query can behave in a number of different ways; the two most important
behaviors are Boolean and phrase.

BOOLEAN QUERY BEHAVIOR
By default, the match query uses Boolean behavior and the OR operator. For example, if you
search for the text “Elasticsearch Denver,” Elasticsearch searches for “Elasticsearch OR
Denver,” which would match get-togethers from both “Elasticsearch Amsterdam” and “Denver
Clojure Group”.

To search for results that contain both “Elasticsearch” and “Denver”, change the operator
by modifying the match field name into a map and set the operator field to and:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "match": {
 "name": { #A
 "query": "elasticsearch denver", #B
 "operator": "and" #C
 }
 }
 }
}'

#A Uses a map instead of a string for the name value
#B Specifies search string in a query key
#C Uses and operator instead of default or operator

The second important way a match query can behave is as a phrase query.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

113

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

PHRASE QUERY BEHAVIOR
A phrase query is useful when searching for a specific phrase within a document, with some
amount of leeway between the positions of each word. This leeway is called slop, which is a
number representing the distance between tokens in a phrase. Say you’re trying to remember
the name of a get-together group; you remember it had the words “Enterprise” and “London”
in it, but you don’t remember the rest of the name. Well, you could search for the phrase
“enterprise london” with slop set to 2 or 3 instead of the default of 0 to find results containing
that phrase without having to exactly know the title of the group:

% curl 'localhost:9200/get-together/groups/_search' -d'
{
 "query": {
 "match": {
 "name": {
 "type": "phrase", #A
 "query": "enterprise london",
 "slop": 1 #B
 }
 }
 },
 "fields": ["name", "description"]
}'
...
{
 "_id": "5",
 "_index": "get-together",
 "_score": 1.7768369,
 "_type": "group",
 "fields": {
 "description": "Enterprise search get-togethers are an opportunity to get

together with other people doing search.",
 "name": "Enterprise search London get-together" #C
 }
}
...

#A Instead of a regular match query, use a match phrase query
#B Specifies a slop of 2 to tell Elasticsearch to have leeway with the distance between the terms
#C The matching field with “enterprise” and “london” separated by a word

PHRASE_PREFIX QUERY
Similar to the match phrase query, the match phrase_prefix query allows you to go one
step further and search for a phrase, but it allows prefix matching on the last term in the
phrase. This behavior is extremely useful for providing a running autocomplete for a search
box, where the user gets search suggestions while typing a search term. When using the
search for this kind of use, it’s a good idea to set the maximum number of expansions for the
prefix by setting the max_expansions setting so the search returns in a reasonable amount of
time.

In the following example, “elasticsearch den” is used as the phrase_prefix query.
Elasticsearch takes the “den” text and looks across all the values of the name field to check for

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

114

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

those that start with “den” (“Denver”, for example). Because this could potentially be a large
set, the number of expansions should be limited.

% curl 'localhost:9200/get-together/group/_search' -d'
{
 "query": {
 "match": {
 "name": {
 "type": "phrase_prefix", #A
 "query": "elasticsearch den", #B
 "max_expansions": 1 #C
 }
 }
 },
 "fields": ["name"]
}'
...
{
 "_id": "2",
 "_index": "get-together",
 "_score": 2.7294521,
 "_type": "group",
 "fields": {
 "name": "Elasticsearch Denver"
 }
}
...

#A Uses a phrase prefix instead of a regular phrase query
#B Matches fields containing “Elasticsearch” and another term that starts with “den”
#C Specifies the maximum number of prefix expansions to try

The Boolean and phrase queries are a great choice for accepting user input; they allow
you to pass in user input in a much less error-prone way, and unlike a query_string query, a
match query won’t choke on reserved characters like +, -, ?, and !.

MATCHING MULTIPLE FIELDS WITH MULTI_MATCH
Although it might be tempting to think that the multi_match query behaves like the terms
query by searching for multiple matches in a field, its behavior is slightly different. Instead, it
allows you to search for a value across multiple fields. This can be helpful in the get-together
example, where you may want to search for a string across both the name of the group and
the description:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "multi_match": {
 "query": "elasticsearch hadoop",
 "fields": ["name", "description"]
 }
 }
}'

Just like the match query can be turned into a phrase query, a prefix query, or a phrase
prefix query, the multi match query can be turned into a phrase query or phrase prefix

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

115

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

query as well, by specifying the type key. Consider the multi match query exactly like the
match query, except that multiple fields can be specified for searching instead of a single field
only.

With all the different match queries, it’s possible to find a way to search for almost
anything, which is why the match query and its relatives are considered the go-to query type
for most uses. We highly recommended you use them whenever possible. For everything else,
however, we’ll cover some of the other types of queries that Elasticsearch supports.

4.4 Beyond match and filter queries
General-purpose queries that we’ve discussed so far, such as the query_string and the match
queries, are particularly useful when the user is faced with a search box because you can run
such a query with the words the user types in.

To narrow the scope of a search, some user interfaces also include other elements next to
the search box, such as a calendar widget that allows you to search for newly created groups,
or a checkbox for filtering events that have a location already established.

4.4.1 Range query and filter
The range query and filter are self-explanatory; they’re used to query for values between a
certain range and can be used for numbers, dates, and even strings.

To use the range query, you specify the top and bottom values for a field. For example, to
search for all groups created between 2009 and 2011 in the index, use the following query:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "range": {
 "created_on": {
 "gt": "2012-06-01", #A
 "lt": "2012-09-01" #A
 }
 }
 }
}'

#A Specifies a date range using gt (greater than) and lt (less than)

Or, you could use a filter instead:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "range": {
 "created_on": {
 "gt": "2012-06-01", #A
 "lt": "2012-09-01" #B

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

116

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 }
 }
 }
 }
}'

#A Searches for a created_on date after June 1 ...
#B ... as well as a created_on date before September 1

See table 4.2 for the meaning of the parameters gt, gte, lt, and lte.

Table 4.2 Range query parameters

Parameter Meaning

Gt Search for fields greater than the value, not including the value

Gte Search for fields greater than the value, including the value

Lt Search for fields less than the value, not including the value

Lte Search for fields less than the value, including the value

The range query also supports ranges of strings; so if you wanted to search for all the groups
in get-togethers between "c" and "e", you could search using the following:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "range": {
 "name": {
 "gt": "c",
 "lt": "e"
 }
 }
 }
}'

When you use the range query, think long and hard about whether a filter would be a
better choice. Because documents that fall into the range of the query have a binary match
(”Yes, this document is in the range,” or “No, this document isn’t in the range”), the range
query doesn’t need to be a query. In fact, for better performance, it should be a filter. If
you’re unsure whether to make it a query or a filter, make it a filter. In 99% of cases, making
a range query a filter is the right thing to do.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

117

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

4.4.2 Prefix query and filter
Similar to the term query, the prefix query and filter allow you to search for a term
containing the given prefix, where the prefix isn’t analyzed while searching. For example, to
search the index for all events that start with “liber”, the following query is used:

% curl 'localhost:9200/get-together/event/_search' -d'
{
 "query": {
 "prefix": {
 "title": "liber"
 }
 }
}'

And, similarly, you can use a filter instead of a regular query, which has almost the same
syntax:

% curl 'localhost:9200/get-together/event/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "prefix": {
 "title": "liber"
 }
 }
 }
 }
}'

But wait! What happens if you were to send the same request, but with “Liber” instead of
“liber”? Well, because the search prefix isn’t analyzed before being sent, it won’t find the
terms that have been lowercased in the index. This is because of the way Elasticsearch
analyzes documents and queries, which we cover in much more depth in chapter 5. Because of
this behavior, the prefix query is a good choice for autocompletion of a partial term that a
user enters if the term is part of the index. For example, you could provide a categories input
box when existing categories are already known. You could take the text entered into a search
box by the user, lowercase it, and use a prefix query to see what other results show up,
allowing you to show the exact prefix matches to a user. But if you need to analyze the term
or want an amount of fuzziness in the results, it’s probably better to stick with the
match_phrase_prefix query for autocomplete functionality.

4.4.3 Wildcard query
You may be tempted to think of the wildcard query as a way to search with regular
expressions, but in truth, the wildcard query is closer to the way shell wildcard globbing
works, for example, running

ls *foo?ar

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

118

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

matches words such as “myfoobar”, “foocar” and “thefoodar”.
Using a string, you can allow Elasticsearch to substitute either any number of characters

(including none of them) for the * wildcard, or a single character for the ? wildcard. For
example, a query for “ba*n” would match “bacon”, “barn”, “ban”, and “baboon” because the *
can be any character sequence. Whereas, a query for “ba?n” would match only “barn” because
? must match a single character at all times. Listing 4.1 demonstrates these wildcard queries
using a new index called wildcard-test.

You can also mix and match with multiple * and ? characters to match a more complex
wildcard pattern, but keep in mind that when a string is analyzed, spaces are stripped out by
default, so ? can’t match a space if spaces aren’t indexed.

Listing 4.14 Example wildcard query

% curl -XPOST 'localhost:9200/wildcard-test/doc/1' -d'

{"title":"The Best Bacon Ever"}'
% curl -XPOST 'localhost:9200/wildcard-test/doc/2' -d'
{"title":"How to raise a barn"}'

% curl 'localhost:9200/wildcard-test/_search' -d'
{
 "query": {
 "wildcard": {
 "title": {
 "wildcard": "ba*n" #A
 }
 }
 }
}'
{
 ...
 "hits" : [{
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "1",
 "_score" : 1.0, "_source" : {"title":"The Best Bacon Ever"}
 }, {
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"title":"How to raise a barn"}
 }]
 ...
}

% curl 'localhost:9200/wildcard-test/_search' -d'
{
 "query": {
 "wildcard": {
 "title": {
 "wildcard": "ba?n" #B
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

119

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

}'
{
 ...
 "hits" : [{
 "_index" : "wildcard-test",
 "_type" : "doc",
 "_id" : "2",
 "_score" : 1.0, "_source" : {"title":"How to raise a barn"}
 }]
 ...
}

#A ba*n matches both bacon and barn
#B ba?n matches only barn, not bacon

Something to note when using this query—the wildcard query isn’t as lightweight as other
queries like the match query; the sooner a wildcard character (* or ?) occurs in the query
term, the more work Lucene and Elasticsearch have to do to match it. Take, for example, the
search term “h*”; Elasticsearch must now match every term starting with “h”. If the term
were “hi*”, Elasticsearch would only have to search through every term starting with “hi”,
which is a smaller subset of all terms starting with “h”. Because of this overhead and
performance considerations, be careful to test the wildcard query on a copy of your data
before putting these queries into production! We talk more about a similar query, the regexp
query, in chapter 6, where we talk about searching with relevancy.

4.4.4 Querying for field existence with filters
Sometimes when querying Elasticsearch, it can be helpful to search for all the documents that
don’t have a field, or are missing a value in the field. In the get-together index, for example,
you might want to search for all groups that don’t have a review. On the other hand, you may
also want to search for all the documents that have a field, regardless of what the content of
the field is. This is where the exists and missing filters come in, both of which act only as
filters, not as regular queries.

EXISTS FILTER
As the name suggests, the exists filter allows you to filter any query to documents that have
a value in a particular field, whatever that value may be. Here’s what the exists filter looks
like:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "exists": { "field": "location.geolocation" }
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

120

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

}'
... only documents with the location.geolocation field are returned ...

On the opposite side, you can use the missing filter.

MISSING FILTER
The missing filter allows you to search for documents that have no value, or where the value
is a default value (also called the “null value,” or null_value in the mapping) that was
specified during the mapping. To search for documents that are missing the reviews field,
you’d use a filter like this:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "missing": {
 "field": "reviews", #A
 "existence": true,
 "null_value": true
 }
 }
 }
 }
}'

#A Finds documents missing the reviews field entirely

If you wanted to expand that filter to also match documents that are missing the field
entirely and that might have the null_value field, you can specify a Boolean value for the
existence and null_value fields. It includes documents that have null_value set in the
field, as shown in this listing.

Listing 4.15 Specify existence and null_value fields as Boolean values

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "missing": {
 "field": "reviews", #A
 "existence": false, #B
 "null_value": true #C
 }
 }
 }
 }
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

121

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Again, find documents missing the reviews field
#B Match documents that have nothing in the reviews field
#C Also match documents that have the null_value in the reviews field

Neither the missing and exists filters are cached but can be configured to be cached if
desired by specifying the _cache key, as we talked about in section 4.

4.4.5 Transforming any query into a filter
So far, we’ve talked about the different types of queries and filters that Elasticsearch supports,
but we’ve been limited to using only the filters that are already provided. Sometimes you may
want to take a query such as query_string, which has no filter equivalent, and turn it into a
filter. Elasticsearch allows you to do this with the query filter, which takes any query and turns
it into a filter.

To transform a query-string query that searches for a name matching “denver clojure” to
a filter, you would use a search like this:

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "match_all": {}
 },
 "filter": {
 "query" : {
 "query_string" : {
 "query" : "name:\"denver clojure\"" #A
 }
 }
 }
}'

#A Using the query filter to wrap a query that doesn't have a filter equivalent

Using this, you can get some of the benefits of a filter (such as not having to calculate a score
for that part of the query). You can also choose to cache this filter if it turns out to be used
many times; the syntax for caching looks slightly different than adding the _cache key, as
shown next.

Listing 4.16 Caching query filter

% curl 'localhost:9200/get-together/_search' -d'
{
 "query": {
 "match_all": {}
 },
 "filter": {
 "fquery": { #A
 "query" : { #A
 "query_string" : { #A
 "query" : "name:\"denver clojure\"" #A
 } #A
 }, #A
 "_cache": true #B

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

122

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 }
}'

#A The “query” part is now inside the “fquery” map
#B Tells Elasticsearch to cache this filter

The query part of the query has moved inside a new key named fquery, which is where the
_cache key now resides. If you find yourself often using a particular query that doesn’t have a
filter equivalent (like one of the match queries, or a query_string query), you may want to
cache it assuming the score for that particular part of the query isn’t important.

4.5 Choosing the best query for the job
Now that we’ve covered some of the most popular Elasticsearch queries, let’s look at how to
decide which queries to use and when. Although there is no hard-and-fast rule for which query
to use for what, table 4.3 helps you determine which query to use for the general case.

Table 4.3 Which type of query to use for general use cases

Use case Query type to use

You want to take input from a user, similar to a
"Google-style" interface and search for documents
with the input.

Use a match query.

You want to take input as a phrase and search for
documents containing that phrase, perhaps with
some amount of leniency (slop)

Use a match phrase query with an amount of slop
to find phrases similar to what the user is searching
for.

You want to search for a single word in a document,
knowing exactly how the word should appear.

Use a term query because query terms aren’t
analyzed.

You want to combine many different searches or
types of searches, creating a single search out of
them.

Use the Bool query to combine any number of
subqueries into a single query.

You want to search for certain terms across many
fields in a document.

Use the multi match query, which behaves similar
to the match query, but on multiple fields.

You want to return every document from a search. Use the match all query to return all documents
from a search.

You want to search a field for values that are Use a range query to search within documents with

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

123

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

between two specified values. values between a certain range.

You want to search a field for values that start with a
specified string.

Use a prefix query to search for terms starting with
a given string.

You want to autocomplete the value of a single word
based on what the user has already typed in.

Use a prefix query to send what the user has
typed in and get back exact matches starting with the
text.

You want to search for all documents that have no
value for a specified field.

Use the missing filter to filter out documents that
are missing fields.

4.6 Summary
• Filters can speed up queries by skipping over the scoring calculations and by caching.
• “Human language” type queries, such as the match and query_string queries, are

suitable for search boxes.
• The match query is the go-to query for full-text search, but the query_string query is

both more flexible and more complex because it exposes the full Lucene query syntax.
• The match query has multiple subtypes: boolean, phrase, and phrase_prefix. The

main difference is that boolean matches individual words, whereas the phrase types
take the order of words into account, as if they were in a phrase.

• Specialized queries such as the prefix and wildcard queries are also supported.
• To filter documents where a field value doesn’t exist, use the missing filter. The

exists filter does the exact opposite; it returns only documents having the specified
field value.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

124

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

5
Analyzing your data

This chapter covers

• Analyzing your document's text with Elasticsearch
• Using the analysis API
• Tokenization
• Character Filters
• Token Filters
• Stemming
• Analyzers included with Elasticsearch

So far we've covered indexing and searching your data, but what actually happens when data
is sent to Elasticsearch? What happens to the text sent in a document to Elasticsearch? How
can it find specific words among sentences, even when the case changes? For example, when
a users searches for the word "Bear," generally you would like a document with the sentence
"I love bears and fish" to match, because the word "bear" is in there. While you could use the
information you learned in the previous chapter to do a query_string search for "bear*" and
find the document, this can much more easily be accomplished by using analysis. Once you
finish this chapter you'll have a better idea of how Elasticsearch's analysis allows you to search
your document set in a more flexible manner.

5.1 What is analysis?
Analysis is the process Elasticsearch performs on the body of a document before the document
is sent off to be indexed. Elasticsearch goes through a number of steps for every analyzed
field before the document is added to the index:

• Character filtering: Transform the characters using a character filter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

125

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Breaking text into tokens: Break apart the text into a set of one or more tokens.
• Token filtering: Transform each token using a token filter.
• Token indexing: Store those tokens into the index.

We'll talk about each step more in detail next, but first, let's see the entire process
summed up in a diagram. In Figure 5.1, we'll use the text "I love Bears & Fish," which is
eventually transformed into the analyzed tokens "I," "like," "bears," and "fish."

Figure 5.1 Overview of the analysis process

CHARACTER FILTERING
As you can see in the upper left of the figure, Elasticsearch first runs the character filters;
these filters are used to transform particular character sequences into other character
sequences. This can be used for things like stripping HTML out of text, or converting an
arbitrary number of characters into other characters (perhaps correcting the text-message

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

126

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

shortening of "I love u too" into "I love you too"). In figure 5.1 we use the character filter to
replace "&" with the word "and,".

BREAKING INTO TOKENS
After the text has had the character filters applied, it needs to be split into pieces that can be
operated on. Lucene itself doesn't act on large strings of data, instead, it acts on what are
known as tokens. Tokens are generated out of a piece of text, which results in any number
(even zero!) of tokens. In English, for example, a common tokenization that can be used is
the whitespace analyzer, which splits text into tokens, based on whitespace like spaces and
newlines. In figure 5.1 this is represented by breaking the string "I love Bears and Fish." into
the tokens "I," "love," "Bears," "and," and "Fish."

TOKEN FILTERING
Once the block of text has been converted into tokens, Elasticsearch will then apply what are
called token filters to each token. These token filters take a token as input and can modify,
add, or remove more tokens as needed. One of the most useful and common examples of a
token filter is the lowercase token filter, which takes in a token and simply lowercases it, to
ensure that you will be able to find a get together about "The Doors" when searching for the
term "doors." The tokens can go through more than one token filter, each doing different
things to the tokens to mold the data into the best format for your index.

In our example in figure 5.1, there are three token filters: the first lowercasing the tokens;
the second removing the stopword "and" (we'll talk about stopwords later in this chapter); and
finally substituting the word "like" for "love," using synonyms.

TOKEN INDEXING
After the tokens have gone through zero-or-more token filters, they are sent to Lucene to be
indexed for the document. These tokens are what make up the inverted index we discussed
back in chapter 1.

 Together, these different parts make up an analyzer, which can also be defined as zero-
or-more character filters, a tokenizer, and zero-or-more token filters. There are some prebuilt
analyzers we’ll talk about later on in this chapter, which you can use without having to
construct your own, but first we'll talk about the different components of an analyzer
individually.

Analysis during a query
Depending on what kind of query you use, this analysis can also be applied to the search text, before
the search is performed against the index. In particular, queries such as the match and
match_phrase queries perform analysis before searching, and queries like the term and terms query
do not. It's important to keep this in mind when debugging why a particular search matches or
doesn't match a document - it might be analyzed differently than what you expect!

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

127

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Now that you have an understanding of what goes on during Elasticsearch's analysis phase,
let's talk about how analyzers are specified for fields in your mapping, and how custom
analyzers are specified.

5.2 Using analyzers for your documents
Knowing about the different types of analyzers and token filters is all fine and well, but before
they can actually be used, Elasticsearch needs to know about how you want to use them. For
instance, you can specify in the mapping, which individual tokenizer and token filters to use
for an analyzer, and which analyzer to use for which field.

 There are two ways to specify analyzers that can be used by your fields:

• when the index is created, as settings for that particular index; or
• as global analyzers in the configuration file for Elasticsearch.

Generally, to be more flexible, it's easier to specify them at the index creation time, which
is also when you will want to specify your mappings. This allows you to create new indices
with updated or entirely different analyzers. On the other hand, if you find yourself using the
same set of analyzers across your indices, without changing them very often at all, you can
also save yourself some bandwidth by putting the analyzers into the configuration file.
Examine how you are using Elasticsearch and pick the option that works the best for you. You
could even combine the two and put the analyzers that are used by all of your indices into the
configuration file, and specify additional analyzers when you create indices, for added
flexibility.

 Regardless of the way you specify your custom analyzers, you will need to specify which
field uses which analyzer in the mapping of your index, either by specifying the mapping when
the index is created, or using the put mapping API to specify it at a later time.

5.2.1 Adding analyzers when an index is created
You've already seen some of the settings when an index is created, in chapter 3, notably
setting the number of primary and replica shards for an index, which look something like this
next listing.

Listing 5.1 Setting the number of primary and replica shards

% curl -XPOST 'localhost:9200/myindex' -d'
{
 "settings" : {
 "number_of_shards": 2, #A
 "number_of_replicas": 1 #B
 },
 "mappings" : {
 ... #C
 }
}'

#A Specifying custom settings for the index, here specifying 2 primary shards
#B And specifying 1 replica here

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

128

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#C Mappings for the index

Adding a custom analyzer is done by specifying another map in the settings config, under the
"index" heading. This header should specify the custom analyzer you want to use, and can
also contain the custom tokenizer, token-filters and char-filters that can be used by the index.
Listing 5.2 shows a custom analyzer that specifies custom parts for all the analysis steps. This
is a complex example, so we've added some headings to show the different parts. Don't worry
about all the code details yet, as we'll go through it later on in this chapter.

Listing 5.2 Adding a custom analyzer during index creation

% curl -XPOST 'localhost:9200/myindex' -d '
{
 "settings" : {
 "number_of_shards": 2, #A
 "number_of_replicas": 1, #A
 "index": { #B
 "analysis": { #C

Custom analyzer

 "analyzer": { #D
 "myCustomAnalyzer": { #E
 "type": "custom", #F
 "tokenizer": "myCustomTokenizer", #G
 "filter": ["myCustomFilter1", "myCustomFilter2"], #H
 "char_filter": ["myCustomCharFilter"] #I
 }
 },

Tokenizer

 "tokenizer": {
 "myCustomTokenizer": { #J
 "type": "letter" #J
 } #J

Custom filters

 },
 "filter": {
 "myCustomFilter1": { #K
 "type": "lowercase" #K
 }, #K
 "myCustomFilter2": { #K
 "type": "kstem" #K
 } #K
 },

Character filter

 "char_filter": {
 "myCustomCharFilter": { #L

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

129

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "type": "mapping", #L
 "mappings": ["ph=>f", " u => you "] #L
 } #L
 }
 }
 }
 },

Mappings

 "mappings" : { #M
 ... #M
 } #M
}'

#A Other settings for the index that we've covered before
#B Other "index"-level settings
#C The analysis settings for this index
#D Specifying a custom analyzer in the "analyzer" object
#E The custom analyzer is named "myCustomAnalyzer"
#F It's of type "custom"
#G It uses the "myCustomTokenizer" to tokenize text
#H Specify two filters that text should be run through, myCustomFilter1 and myCustomFilter2
#I Specify a custom char filter called "myCustomCharFilter" that will run before other analysis
#J Specifying the custom tokenizer of type "letter"
#K Two custom token filters, one for lowercasing and another using kstem
#L A custom char filter that translates characters to other mappings
#M Mappings for creating the index

The mappings have been left out of the code listing here, as we'll cover how to specify the
analyzer for a field in section 5.2.3. In this example, a custom analyzer is created called
myCustomAnalyzer, which uses the custom tokenizer myCustomTokenizer, two custom filters
named myCustomFilter1 and myCustomFilter2, and a custom character filter named
myCustomCharFilter (notice a trend here?). Each of these separate analysis parts are given
in their respective JSON sub-maps. Multiple analyzers can be specified with different names,
and combined by custom analyzers to give you flexible analysis options when indexing and
searching.

Now that you have a sense of what adding custom analyzers looks like when an index is
created, let's look at the same analyzers added to the Elasticsearch configuration itself.

5.2.2 Adding analyzers to the Elasticsearch configuration
In addition to specifying analyzers with settings during index creation, adding analyzers into
the Elasticsearch config is another supported way of specify custom analyzers. There are
tradeoffs to this method however; if you specify the analyzers during index creation, you will
always be able to make changes to the analyzers without restarting Elasticsearch. But, if you
specify the analyzers in the Elasticsearch configuration, you will need to restart Elasticsearch
to pick up any changes you make to the analyzers. On the flip side, you'll have less data to
send when creating indices. While it’s generally easier to specify them at index creation for the

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

130

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

larger degree of flexibility, if you plan to never change your analyzers, you can go ahead and
put them into the configuration file.

 Specifying analyzers in the elasticsearch.yml configuration file is very similar to
specifying them as JSON; here are the same custom analyzers from the previous section, but
specified in the configuration YAML file:

index:
 analysis:
 analyzer:
 myCustomAnalyzer:
 type: custom
 tokenizer: myCustomTokenizer
 filter: [myCustomFilter1, myCustomFilter2]
 char_filter: myCustomCharFilter
 tokenizer:
 myCustomTokenizer:
 type: letter
 filter:
 myCustomFilter1:
 type: lowercase
 myCustomFilter2:
 type: kstem
 char_filter:
 myCustomCharFilter:
 type: mapping
 mappings: ["ph=>f", " u => you "]

5.2.3 Specifying the analyzer for a field in the mapping
There's one piece of the puzzle left before you're off on your way, analyzing fields with custom
analyzers: how to specify that a particular field in the mapping should be analyzed using one
of your custom analyzers. It's quite simple to specify the analyzer for a field by setting the
"analyzer" field on a mapping. For instance, if we had the mapping for a field called
"description," specifying the analyzer would look like this:

{
 "mappings" : {
 "document" : {
 "properties" : {
 "description" : {
 "type" : "string",
 "analyzer" : "myCustomAnalyzer" #A
 }
 }
 }
 }
}

#A Specifying the analyzer "myCustomAnalyzer" for the description field

If you want a particular field to not be analyzed at all, you need to specify the "index" field
with the not_analyzed setting. This keeps the text as a single token, without any kind of
modification (no lowercasing or anything). It looks something like this:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

131

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

{
 "mappings" : {
 "document" : {
 "properties" : {
 "name" : {
 "type" : "string",
 "index" : "not_analyzed" #A
 }
 }
 }
 }
}

#A Specifying that the name field is not to be analyzed

There is a common pattern for fields where you may want to search on both the analyzed
and verbatim text of a field, which is to stick them in multi-fields.

USING MULTI-FIELD TYPE TO STORE DIFFERENTLY ANALYZED TEXT

Often it's quite helpful to be able to search on both the analyzed version of a field, as well as
the original, non-analyzed text. This is especially useful for things like facets and
aggregations, or sorting on a string field. Elasticsearch makes this simple to do by using multi
fields, which we first saw in chapter 3. Take the "name" field for example; you may want to be
able to sort on the name field, but search through it using analysis. You can specify a field that
does both like so:

% curl -XPOST 'localhost:9200/myindex' -d'

{
 "mappings": {
 "type": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "standard", #A
 "fields": {
 "raw": {
 "index": "not_analyzed", #B
 "type": "string"
 }
 }
 }
 }
 }
 }
}'

#A The original analysis, using the standard analyzer
#B A raw version of the field, which is not analyzed

We’ve covered how to specify analyzers; now we're ready to cover a neat way to check
how any arbitrary text can be analyzed: the analyze API.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

132

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

5.3 Analyzing text with the analyze API
Using the analysis API to test the analysis process can be extremely helpful when tracking
down how information is being stored in your Elasticsearch indices. This API allows you to
send any text to Elasticsearch, specifying what analyzer, tokenizer or token filters to use and
get back the analyzed tokens.

Here's an example of what the analyze API looks like, using the standard analyzer to
analyze the text “I love Bears and Fish.”

Listing 5.3 Example of using the analyze API

% curl -XPOST 'localhost:9200/_analyze?analyzer=standard' -d'I love Bears and Fish.'
And an example of the output:
{
 "tokens": [
 {
 "end_offset": 1,
 "position": 1,
 "start_offset": 0,
 "token": “I”, #A
 "type": "<ALPHANUM>"
 },
 {
 "end_offset": 6,
 "position": 2,
 "start_offset": 2,
 "token": “love”, #A
 "type": "<ALPHANUM>"
 },
 {
 "end_offset": 12,
 "position": 3,
 "start_offset": 7,
 "token": “bears”, #A

 "type": "<ALPHANUM>"
 },
 {
 "end_offset": 16,
 "position": 4,
 "start_offset": 13,
 "token": “and”, #A
 "type": "<ALPHANUM>"
 },
 {
 "end_offset": 21,
 "position": 5,
 "start_offset": 17,
 "token": “fish”, #A
 "type": "<ALPHANUM>"
 }
]
}

#A The analyzed tokens: “i”, “love”, “bears”, “and”, and “fish”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

133

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The most important output from the analysis API is the “token” key. The output is a list of
these maps, which gives you a representation of what the processed tokens (the ones that are
going to actually be written to the index!) look like. For example, with our text “I like Bears
and Fish.”, we get back five tokens: [“i”, “like”, “bears”, “and”, “fish”]. Notice that in this case,
with the standard analyzer, each token was lowercased, and the punctuation at the end of the
sentence was removed. This is a great way to test documents to see how Elasticsearch will
analyze them, and has quite a few ways to customize the analysis that is performed on the
text.

SELECTING AN ANALYZER
If you already have an analyzer in mind, and want to see how it handles some text, you can
set the analyzer parameter to the name of the analyzer. We'll go over the different build-in
analyzers in the next section, so keep this in mind if you want to try any of them out!

If you configured an analyzer in your elasticsearch.yml file, you can also reference it by
name in the analyzer parameter. Additionally, if you've created an index with a custom
analyzer similar to the example in 5.2.1, you can still use this analyzer by name, but instead
of using the HTTP endpoint of /_search, you'll need to specify the index first. An example
using the index named “veggies” and an analyzer called “myanalyzer” is shown below:

% curl -XPOST 'localhost:9200/veggies/_analyze?analyzer=myanalyzer” -d'...'

COMBINING PARTS TO CREATE AN IMPROMPTU ANALYZER
Sometimes you may not want to use a built-in analyzer, but instead try out a combination of
tokenizers and token-filters, for instance, to see how a particular tokenizer breaks up a
sentence without any other analysis. With the analysis API you can specify a tokenizer, and a
list of token-filters to be used for analyzing the text. For example, if you wanted to use the
whitespace tokenizer (to split the text on spaces) and then use the lowercase and reverse
token filters, you could do so by using the following:

% curl -XPOST
'localhost:9200/_analyze?tokenizer=whitespace&filters=lowercase,reverse' -d
'I love Bears and Fish.'

And you would get back the following tokens:

{
 "tokens" : [{
 "token" : "i",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "evol",
 "start_offset" : 2,
 "end_offset" : 6,
 "type" : "word",
 "position" : 2
 }, {
 "token" : "sraeb",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

134

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "start_offset" : 7,
 "end_offset" : 12,
 "type" : "word",
 "position" : 3
 }, {
 "token" : "dna",
 "start_offset" : 13,
 "end_offset" : 16,
 "type" : "word",
 "position" : 4
 }, {
 "token" : ".hsif",
 "start_offset" : 17,
 "end_offset" : 22,
 "type" : "word",
 "position" : 5
 }]
}

Which first has tokenized the sentence “I like Bears and Fish.” into the tokens [“I”, “like”,
“Bears”, “and”, “Fish.”]; next it lowercases the tokens into [“i”, “like”, “bears”, “and”, “fish.”];
and finally, reverses each token to get [“i”, “ekil”, “sraeb”, “dna”, “.hsif”].

ANALYZING BASED ON A FIELD'S MAPPING
One more helpful thing about the analysis API once you start creating mappings for an index,
is that Elasticsearch allows you to analyze based on a field where the mapping has already
been created. If you create a mapping with a field “description” that looks like this snippet.

… other mappings …
"description": {
 "type": "string",
 "analyzer": "italian"
}

You can then use the analyzer associated with the field by specifying the field parameter
with the request.

% curl -XPOST 'localhost:9200/veggies/_analyze?field=description' -d'Era
deliziosa'

And the Italian analyzer will automatically be used, since it is the analyzer associated with
the description field. Keep in mind that in order to use this, you'll need to specify an index,
because Elasticsearch needs to be able to get the mappings for a particular field from an
index.

Now that we've covered how to test out different analyzers using curl, let's jump into all
the different analyzers that Elasticsearch provides for you out of the box. Keep in mind that
you can always create your own analyzer by combining the different parts (tokenizers and
token-filters).

5.4 Analyzers, Tokenizers and Token Filters, oh my!
In this section we'll discuss the built-in analyzers, tokenizers, and token filters that
Elasticsearch provides. Elasticsearch provides a large number, such as lowercasing, stemming,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

135

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

language-specific, synonyms and so on, so you have a lot of flexibility to combine them in
different wants to get your desired tokens.

5.4.1 Built-in analyzers
In this section I'll give you a rundown of the analyzers that Elasticsearch comes with out of the
box. Remember that an analyzer is an optional character filter, a single tokenizer, and zero-
or-more token filters. Figure 5.2 is a visualization of what an analyzer looks like.

Figure 5.2 Analyzer overview

We'll be referencing tokenizers and token filters, which we’ll cover in more detail in the
following sections. With each analyzer, we'll include an example of some text that
demonstrates what analysis using that analyzer looks like.

STANDARD
The standard analyzer is the default analyzer for text when no analyzer is specified. It
combines sensible defaults for most European languages by combining the standard tokenizer,
the standard token filter, and the lowercase token filter. There's not much to say about the
standard analyzer; we'll talk about what exactly the standard tokenizer and standard token
filter do in sections 5.4.2 and 5.4.3; just keep in mind that if you don't specify an analyzer for
a field the standard analyzer is what will be used for that field.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

136

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

SIMPLE
The simple analyzer is just that - simple! It simply uses the lowercase tokenizer, which means
tokens are split at non-letters and automatically lowercased. This analyzer doesn't work well
for Asian languages that don't separate words with whitespace though, so use it only for
European languages.

WHITESPACE
The whitespace analyzer does nothing but split text into tokens around whitespace, very
simple!

STOP
The stop analyzer behaves just like the simple analyzer, but additionally filters out stop words
from the token stream.

KEYWORD
The keyword analyzer takes the entire field and generates a single token on it. Keep in mind
however, that rather than using the keyword tokenizer in your mappings, it's better to set the
"index" setting to "not_analyzed."

PATTERN
The pattern analyzer allows you to specify a pattern for tokens to be broken apart at.
However, since the pattern would have to be specified regardless, it often makes more sense
to use a custom analyzer and combine the existing pattern tokenizer with any needed token
filters.

LANGUAGE & MULTI-LINGUAL
Elasticsearch supports a wide variety of language-specific analyzers out of the box. There are
analyzers for arabic, armenian, basque, brazilian, bulgarian, catalan, chinese, cjk, czech,
danish, dutch, english, finnish, french, galician, german, greek, hindi, hungarian, indonesian,
italian, norwegian, persian, portuguese, romanian, russian, spanish, swedish, turkish, and
thai. If you want to analyze a language not included in this list, there may be a plugin for it as
well.

SNOWBALL
The snowball analyzer uses the standard tokenizer and token filter (just like the standard
analyzer), with the lowercase token filter, the stop filter, as well as stemming the text using
the snowball stemmer. Don't worry if you aren't sure what stemming is, as we'll discuss it in
more detail near the end of this chapter.

Before these analyzers sink in, however, you need to understand the parts that make up
the analyzer, so we'll discuss the tokenizers that Elasticsearch supports next.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

137

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

5.4.2 Tokenization

STANDARD TOKENIZER
The standard tokenizer is a grammar-based tokenization that is good for most European
languages; it also handles segmenting Unicode text, although with a max token length of 255.
It also removes punctuation like commas and periods.

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' -d'I have, potatoes.'
{
 "tokens" : [{
 "token" : "I",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "have",
 "start_offset" : 2,
 "end_offset" : 6,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "potatoes",
 "start_offset" : 8,
 "end_offset" : 16,
 "type" : "<ALPHANUM>",
 "position" : 3
 }]
}

KEYWORD
The keyword tokenizer is a very simple tokenizer that takes the entire text and provides it as a
single token to the token filters. This can be useful when you only want to apply token filters
without doing any kind of tokenization.

LETTER
The letter tokenizer takes the text and divides into tokens at things that are not letters. For
example, with the sentence "Hi, there." the tokens would be: Hi and there because the
comma, space, and period are all non-letters.

% curl -XPOST 'localhost:9200/_analyze?tokenizer=letter' -d'Hi, there.'
{
 "tokens" : [{
 "token" : "Hi",
 "start_offset" : 0,
 "end_offset" : 2,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "there",
 "start_offset" : 4,
 "end_offset" : 9,
 "type" : "word",
 "position" : 2
 }]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

138

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

}

LOWERCASE
The lowercase tokenizer combines both the regular letter tokenizer's action as well as the
action of the lowercase token filter (which, as you can imagine, lowercases the entire token).
The main reason to do this with a single tokenizer is that better performance is gained by
doing both at once.

WHITESPACE
The whitespace tokenizer separates tokens by whitespace. Note that this tokenizer doesn't
remove any kind of punctuation, so tokenizing the text "Hi, there." results in two tokens, "Hi,"
and "there."

% curl -XPOST 'localhost:9200/_analyze?tokenizer=whitespace' -d'Hi, there.'
{
 "tokens" : [{
 "token" : "Hi,",
 "start_offset" : 0,
 "end_offset" : 3,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "there.",
 "start_offset" : 4,
 "end_offset" : 10,
 "type" : "word",
 "position" : 2
 }]
}

PATTERN
The pattern tokenizer allows you to specify an arbitrary pattern where text should be split into
tokens. The pattern that is specified should match the spacing characters, for example, if you
wanted to split text on any two-digit number, you could create a custom analyzer that breaks
tokens at wherever the text .-. occurs, which would look like this:

% curl -XPOST 'localhost:9200/pattern' -d'{
 "settings": {
 "index": {
 "analysis": {
 "tokenizer": {
 "pattern1": {
 "type": "pattern",
 "pattern": "\\.-\\."
 }
 }
 }
 }
 }
}'

% curl -XPOST 'localhost:9200/pattern/_analyze?tokenizer=pattern1' -d'breaking.-

.some.-.text'
{
 "tokens" : [{

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

139

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "token" : "breaking",
 "start_offset" : 0,
 "end_offset" : 8,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "some",
 "start_offset" : 11,
 "end_offset" : 15,
 "type" : "word",
 "position" : 2
 }, {
 "token" : "text",
 "start_offset" : 18,
 "end_offset" : 22,
 "type" : "word",
 "position" : 3
 }]
}

UAX URL EMAIL
The standard tokenizer is pretty good at figuring out English words, but these days there is
quite a bit of text that ends up having website addresses and email addresses in them. The
standard analyzer breaks these apart in places where you may not intend, for example, if we
take the example email address john.smith@example.com and analyze it with the standard
tokenizer, it gets split into multiple tokens:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' -
d'john.smith@example.com'

{
 "tokens" : [{
 "token" : "john.smith",
 "start_offset" : 0,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "example.com",
 "start_offset" : 11,
 "end_offset" : 22,
 "type" : "<ALPHANUM>",
 "position" : 2
 }]
}

Here you see it's been split into the john.smith part and the example.com part. It also
splits URLs into separate parts:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=standard' -d
'http://example.com?q=foo'

{
 "tokens" : [{
 "token" : "http",
 "start_offset" : 0,
 "end_offset" : 4,
 "type" : "<ALPHANUM>",
 "position" : 1

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

140

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
mailto:john.smith@example.com
mailto:d'john.smith@example.com
http://example.com?q=foo
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }, {
 "token" : "example.com",
 "start_offset" : 7,
 "end_offset" : 18,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "q",
 "start_offset" : 19,
 "end_offset" : 20,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "foo",
 "start_offset" : 21,
 "end_offset" : 24,
 "type" : "<ALPHANUM>",
 "position" : 4
 }]
}

The UAX URL Email tokenizer will preserve both emails and URLs as single tokens:

% curl -XPOST 'localhost:9200/_analyze?tokenizer=uax_url_email' -d'
john.smith@example.com http://example.com?q=bar'
{
 "tokens" : [{
 "token" : "john.smith@example.com",
 "start_offset" : 1,
 "end_offset" : 23,
 "type" : "<EMAIL>",
 "position" : 1
 }, {
 "token" : "http://example.com?q=bar",
 "start_offset" : 24,
 "end_offset" : 48,
 "type" : "<URL>",
 "position" : 2
 }]
}\

This can be extremely helpful when you want to search for exact urls or email addresses in
a text field.

PATH HIERARCHY
The path hierarchy tokenizer allows you to index filesystem paths in a way where searching
for files sharing the same path will return results. For example, let's assume you have a
filename you want to index that looks like "/usr/local/var/log/elasticsearch.log". Here's what
the path hierarchy tokenizer tokenizes this into:

% curl 'localhost:9200/_analyze?tokenizer=path_hierarchy' -d
'/usr/local/var/log/elasticsearch.log'

{
 "tokens" : [{
 "token" : "/usr",
 "start_offset" : 0,
 "end_offset" : 4,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

141

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
mailto:john.smith@example.com
http://example.com?q=bar
mailto:john.smith@example.com
http://example.com?q=bar
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "type" : "word",
 "position" : 1
 }, {
 "token" : "/usr/local",
 "start_offset" : 0,
 "end_offset" : 10,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "/usr/local/var",
 "start_offset" : 0,
 "end_offset" : 14,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "/usr/local/var/log",
 "start_offset" : 0,
 "end_offset" : 18,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "/usr/local/var/log/elasticsearch.log",
 "start_offset" : 0,
 "end_offset" : 36,
 "type" : "word",
 "position" : 1
 }]
}

This means a user querying for a file sharing the same path hierarchy (hence the name!)
as this file will find a match. Querying for "/usr/local/var/log/es.log" will still share the same
tokens as "/usr/local/var/log/elasticsearch.log", so it can still be returned as a result.

 Now that we've touched on the different ways of splitting a block of text into different
tokens, let's talk about what we can do with each of those tokens.

5.4.3 Token Filters
There are a lot of token filters included in Elasticsearch; we'll cover only the most popular
ones in this section, since enumerating all of them would make this section much too verbose.
Like the token filters you saw in Figure 5.1, here is an example of three token filters, the
lowercase filter, the stopword filter, and the synonym filter.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

142

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 5.3 Token filters prep data for indexing

STANDARD
Don't be fooled by thinking the standard token filter performs complex calculation; it actually
does nothing at all! In the older versions of Lucene it used to remove the "'s" characters from
the end of words, as well as removing some extraneous period characters, but these are
handled instead by some of the other token filters and tokenizers.

LOWERCASE
The lowercase token filter does just that: lowercases any token that gets passed through it.
Simple enough to understand:

% curl 'localhost:9200/_analyze?tokenizer=keyword&filters=lowercase' -d'HI THERE!'
{
 "tokens" : [{
 "token" : "hi there!",
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }]
}

LENGTH
The length token filter removes words that fall outside of a boundary for the minimum and
maximum length of the token. For example, if you set the min setting to 2 and the max

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

143

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

setting to 8, any token shorter than two characters will be removed and any character longer
than 8 characters will be removed.

STOP
The stop token filter removes stop words from the token stream. For English, this means all
tokens that fall into this list are entirely removed. You can also specify a list of words to be
removed for this filter.

What are the stopwords? Here is the default list of stopwords for the English language:
"a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "no",

"not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this",
"to", "was", "will", "with"

To specify the list of stop words, you can create a custom token filter with a list of works,
like this:

% curl -XPOST 'localhost:9200/stopwords' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "stop1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-stop-filter"]
 }
 },
 "filter": {
 "my-stop-filter": {
 "type": "stop",
 "stopwords": ["the", "a", "an"]
 }
 }
 }
 }
 }
}'

Or, to read the list of stopwords from a file using either a path relative to the configuration
location, or an absolute path:

% curl -XPOST 'localhost:9200/stopwords' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "stop1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-stop-filter"]
 }
 },
 "filter": {
 "my-stop-filter": {
 "type": "stop",
 "stopwords_path": "config/stopwords.txt"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

144

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 }
 }
 }
}'

TRUNCATE, TRIM AND LIMIT TOKEN COUNT
The next three token filters all deal with limiting the token stream in some way:

• The truncate token filter allows you to truncate tokens over a certain length by settings
the length parameter in the custom configuration, by default it truncates to 10
characters.

• The trim token filter removes all of the whitespace around a token, for example, the
token " foo " will be transformed into the token "foo".

• The limit token count token filter limits the maximum number of tokens that a
particular field can contain. For example, if you create a customized token count filter
with a limit of 8, only the first 8 tokens from the stream will be indexed. This is set
using the max_token_count parameter, which defaults to 1 (only a single token will be
indexed).

REVERSE
The reverse token filter allows you to take a stream of tokens and reverse each one. This is
particularly useful if you are using the edge ngram filter, or want to do leading wildcard
searches. Instead of doing a leading wildcard search for *bar, which is very slow for Lucene,
you can instead search using rab* on a field that has been reversed, resulting in a much faster
query. Here's an example of reversing a stream of tokens.

Listing 5.4 Example of the reverse token filter

% curl 'localhost:9200/_analyze?tokenizer=standard&filters=reverse' -d'Reverse token
filter'

{
 "tokens" : [{
 "token" : "esreveR", #A
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "nekot", #B
 "start_offset" : 8,
 "end_offset" : 13,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "retlif", #C
 "start_offset" : 14,
 "end_offset" : 20,
 "type" : "<ALPHANUM>",
 "position" : 3
 }]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

145

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

}

#A The word "Reverse" that has been reversed
#B The word "token" that has been reversed
#C The word "filter" that has been reversed

You can see that each token has been reversed, but the order of the tokens has been
preserved.

UNIQUE
The unique token filter keeps only unique tokens; it keeps the metadata of the first token that
matches, removing all future occurrences of it.

% curl 'localhost:9200/_analyze?tokenizer=standard&filters=unique' -d'foo bar foo
bar baz'

{
 "tokens" : [{
 "token" : "foo",
 "start_offset" : 0,
 "end_offset" : 3,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "bar",
 "start_offset" : 4,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "baz",
 "start_offset" : 16,
 "end_offset" : 19,
 "type" : "<ALPHANUM>",
 "position" : 3
 }]
}

ASCII FOLDING
The ascii folding token filter converts Unicode characters that aren't part of the regular ASCII
character set into the ASCII equivalent, if one exists for the character. For example, we can
convert the unicode "ü" into an ASCII "u" as seen here:

% curl 'localhost:9200/_analyze?tokenizer=standard&filters=asciifolding' -
d'ünicode'

{
 "tokens" : [{
 "token" : "unicode",
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "<ALPHANUM>",
 "position" : 1
 }]
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

146

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

SYNONYM
The synonym token filter replaces synonyms for words in the token stream at the same offset
as the original tokens, for example, let's take the text "I own that automobile" and the
synonym for "automobile", "car". Without the synonym token filter we produce the following
tokens:

% curl 'localhost:9200/_analyze?analyzer=standard' -d'I own that automobile'
{
 "tokens" : [{
 "token" : "i",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "own",
 "start_offset" : 2,
 "end_offset" : 5,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "that",
 "start_offset" : 6,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "automobile",
 "start_offset" : 11,
 "end_offset" : 21,
 "type" : "<ALPHANUM>",
 "position" : 4
 }]
}

You can define a custom analyzer that specifies a synonym for "automobile" like this:

% curl -XPOST 'localhost:9200/syn-test' -d'{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "synonyms": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my-synonym-filter"]
 }
 },
 "filter": {
 "my-synonym-filter": {
 "type": "synonym",
 "expand": true,
 "synonyms": ["automobile=>car"]
 }
 }
 }
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

147

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

}'

And when we use it, you can see that the "automobile" token has been replaced by the
"car" token in the results:

% curl 'localhost:9200/syn-test/_analyze?analyzer=synonyms' -d'I own that
automobile'

{
 "tokens" : [{
 "token" : "I",
 "start_offset" : 0,
 "end_offset" : 1,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "own",
 "start_offset" : 2,
 "end_offset" : 5,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "that",
 "start_offset" : 6,
 "end_offset" : 10,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "car",
 "start_offset" : 11,
 "end_offset" : 21,
 "type" : "SYNONYM",
 "position" : 4
 }]
}

5.5 Ngrams, Edge Ngrams, and Shingles
Ngrams and Edge NGrams are one of the more unique ways of tokenizing text in Elasticsearch.
Ngrams are a way of splitting a token into multiple sub tokens for each part of a word. Both
the ngram and edge ngram filters allow you to specify what is called a min_gram as well as
well as a max_gram setting. These settings control the size of the tokens that the word is being
split up into. This might be kind of confusing, so let's show an example. Assuming you want to
analyze the word "spaghetti" with the ngram analyzer, let's start with the simplest case, 1-
grams (also known as unigrams): We'll be using the word spaghetti for these examples.

1-GRAMS
The 1-grams for "spaghetti" are s, p, a, g, h, e, t, t, i. The string has been split into
smaller tokens according to the size of the ngram. In this case, each item is a single character
since we are talking about unigrams.

BIGRAMS
If you were to split the string into bigrams (which means a size of two). You would get the
following smaller tokens: sp, pa, ag, gh, he, et, tt, ti

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

148

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

TRIGRAMS
And again, if we were to use a size of three (which are called trigrams), we get the tokens
spa, pag, agh, ghe, het, ett, tti

SETTING MIN_GRAM AND MAX_GRAM
When using this analyzer, there are actually two different sizes you need to set: one specifies
the smallest ngrams you want to generate (the min_gram setting), and the other specifies the
largest ngrams you want to generate. Using our previous example, if we specified a min_gram
of 2 and a max_gram of 3, we would get the combined tokens from our two previous examples:

sp, spa, pa, pag, ag, agh, gh, ghe, he, het, et, ett, tt, tti, ti

If you were to set the min_gram setting to 1 and leave max_gram at 3, you get even more
tokens starting with s, sp, spa, p, pa, pag, a, ... etc.

Analyzing text in this way has an interesting advantage, when you query for text, your
query is going to be split into text the same way, so say you're looking for the incorrectly
spelled word "spaghety". Well, one way of searching for this is to do a fuzzy query, which
allows you to specify an edit distance for words to check matches. However, you can get a
similar sort of behavior by using ngrams. Let's compare the bigrams generated for the original
word ("spaghetti") with the misspelled one ("spaghety").

• Bigrams for "spaghetti": sp, pa, ag, gh, he, et, tt, ti
• Bigrams for "spaghety": sp, pa, ag, gh, he, et, ty

You can see that six of the tokens overlap; so words with spaghetti in them would still be
able to be matched when the query contained spaghety. Keep in mind this means more words
that you may not intend, match the original "spaghetti" word, so always make sure to test
your query relevancy!

Another useful thing ngrams do is allow you to analyze text when you don't know the
language beforehand, or languages that combine words in a different manner than other
European languages. This also has an advantage in being able to handle multiple languages
with a single analyzer, rather than having to specify different analyzers or using different fields
for documents in different languages.

EDGE NGRAMS
There is a variant to the regular ngram splitting called edge ngrams that builds up ngrams
only from the front edge. In our "spaghetti" example, if we set the min_gram setting to 2 and
the max_gram setting to 6, we'd get the following tokens:

sp, spa, spag, spagh, spaghe

You can see that each token is built from the edge. This can be helpful for searching for
word sharing the same prefix, without actually performing a prefix query. If you need to build
ngrams from the back of a word, you can put a "reverse" token filter before the edge ngrams
token filter; then follow the token filter with another "reverse" token filter, so the entire
stream would look like:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

149

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

spaghetti

--reverse-->

ittehgaps

--edge ngrams-->

it, itt, itte, itteh, ittehg

--reverse again-->

ti, tti, etti, hetti, ghetti

NGRAM SETTINGS
Ngrams turn out to be a great way to analyze text when you don't know what language it is,
because they can analyze languages that don't have spaces between words. An example of
configuring an edge ngram analyzer with min and max grams would look like this.

Listing 5.5 Ngram analysis

% curl -XPOST 'localhost:9200/ng' -d'{
 "settings": {
 "number_of_shards": 1,
 "number_of_replicas": 0,
 "index": {
 "analysis": {
 "analyzer": {
 "ng1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["reverse", "ngf1", "reverse"] #A
 }
 },
 "filter": {
 "ngf1": {
 "type": "edgeNgram",
 "min_gram": 2, #B
 "max_gram": 6 #B
 }
 }
 }
 }
 }
}'
% curl -XPOST 'localhost:9200/ng/_analyze?analyzer=ng1' -d'spaghetti'
{
 "tokens" : [{
 "token" : "ti", #C
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "tti", #C
 "start_offset" : 0,
 "end_offset" : 9,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

150

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "type" : "word",
 "position" : 1
 }, {
 "token" : "etti", #C
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "hetti", #C
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "ghetti", #C
 "start_offset" : 0,
 "end_offset" : 9,
 "type" : "word",
 "position" : 1
 }]
}

#A Configuring an analyzer for reversing, edge ngrams, and reversing again
#B Setting the minimum and maximum size for the edge ngram token filter
#C The analyzed tokens from the right-hand side of the word "spaghetti"

SHINGLES
Along the same lines as ngrams and edge ngrams, we have a filter known as the shingles filter
(no not the disease!). The shingles token filter is basically ngrams at the token level, instead
of the character level.

Think of our favorite word, spaghetti. Using ngrams with a min and max set to 1 and 3,
Elasticsearch will generate the tokens "s", "sp", "spa", "p", "pa", "pag", "a", "ag" and so on. A
shingle filter does this at the token level instead, so if you had the text "foo bar baz" and
used, again, a min_gram of 2 and a max_gram of 3, you would generate the following tokens:

foo, foo bar, foo bar baz, bar, bar baz, baz

Why is the single-token output still included? This is because by default the shingle filter
includes the original tokens; so the original tokenizer produces the tokens foo, bar, bar, which
are then passed to the shingle token filter, which generates the tokens foo bar, foo bar baz,
bar baz. All of these tokens are combined to form the final token stream. This behavior can be
disabled by setting the output_unigrams option to false.

Here is an example of a shingle token filter, note that the min_shingle_size option must
be larger than or equal to 2.

Listing 5.6 Shingle token filter example

% curl -XPOST 'localhost:9200/shingle' -d'{
 "settings": {
 "index": {
 "analysis": {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

151

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "analyzer": {
 "shingle1": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["shingle-filter"]
 }
 },
 "filter": {
 "shingle-filter": {
 "type": "shingle",
 "min_shingle_size": 2, #A
 "max_shingle_size": 3, #A
 "output_unigrams": false #B
 }
 }
 }
 }
 }
}'
% curl -XPOST 'localhost:9200/shingle/_analyze?analyzer=shingle1' -d'foo bar baz'
{
 "tokens" : [{
 "token" : "foo bar", #C
 "start_offset" : 0,
 "end_offset" : 7,
 "type" : "shingle",
 "position" : 1
 }, {
 "token" : "foo bar baz", #C
 "start_offset" : 0,
 "end_offset" : 11,
 "type" : "shingle",
 "position" : 1
 }, {
 "token" : "bar baz", #C
 "start_offset" : 4,
 "end_offset" : 11,
 "type" : "shingle",
 "position" : 2
 }]
}

#A Specifying the minimum and maximum shingle size
#B Telling the shingle token filter not to keep the original single tokens
#C The analyzed shingle tokens

5.6 Stemming
Stemming is the act of reducing a word to its base or root word. This is extremely handy when
searching, because it means you are able to match things like the plural of a word, as well as
words sharing the root or stem of the word (hence the name stemming!). Let's look at a
concrete example. If the word is 'administrations', the root of the word is 'administr'. This
allows you to match all of the other roots for this word, like 'administrator', 'administration',
and 'administrate'. Stemming is a powerful way of making your searches more flexible than
rigid exact matching.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

152

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

5.6.1 Algorithmic stemming
Algorithmic stemming is stemming that is applied by using a formula or set of rules for each
token in order to stem it. There are three different algorithmic stemmers that Elasticsearch
currently offers the snowball filter, the porter stem filter, and the kstem filter. They behave in
almost the same way, but have some slight differences in how aggressive they are with regard
to stemming. By "aggressive" we mean that the more aggressive stemmers chop off more of
the word than the less aggressive stemmers. Here's a comparison of the different algorithmic
stemmers.

stemmer administrations administrators Administrate

snowball administr administr Administer

porter stem administr administr Administer

kstem administration administrator Administrate

Figure 5.4 Comparing stemming of snowball, porter stem and kstem

To try out how a stemmer stems a word, you can specify it as a token filter with the analyze
API:

curl -XPOST 'localhost:9200/_analyze?tokenizer=standard&filters=kstem' -d
'administrators'

Use either snowball, porter_stem, or kstem for the filter to test it out.
As an alternative to algorithmic stemming, you can stem using a dictionary, which is just a

one-to-one mapping of the original word to its stem.

5.6.2 Stemming with dictionaries
Sometimes algorithmic stemmers can stem words in a strange way, because they don't know
any of the underlying language. Because of this, there is a more accurate way to stem words
that uses a dictionary of words. In Elasticsearch you can use the hunspell token filter,
combined with a dictionary, to handle the stemming. Because of this, the quality of the
stemming is directly related to the quality of the dictionaries that you use. The stemmer will
only be able to stem words it has in the dictionary.

When creating a hunspell analyzer, the dictionary files should be in a directory called
"hunspell", in the same directory as elasticsearch.yml. Inside the hunspell directory
dictionaries for each language should be in a folder named after it's associated locale. For
example, to create an index with a hunspell analyzer:

% curl -XPOST 'localhost:9200/hspell' -d'{
 "analysis" : {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

153

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "analyzer" : {
 "hunAnalyzer" : {
 "tokenizer" : "standard",
 "filter" : ["lowercase", "hunFilter"]
 }
 },
 "filter" : {
 "hunFilter" : {
 "type" : "hunspell",
 "locale" : "en_US",
 "dedup" : true
 }
 }
 }
}

 The hunspell dictionary files should be inside <es-config-dir>/hunspell/en_US (replace
"<es-config-dir>" with the location of your Elasticsearch configuration directory). The "en_US"
folder is used since this hunspell analyzer is for the English language, and corresponds to the
locale setting in the previous example. You can also change where Elasticsearch looks for
hunspell dictionaries by setting the indices.analysis.hunspell.dictionary.location
setting in elasticsearch.yml. To test that your analyzer is working correctly, you can use the
analyze API again:

% curl -XPOST 'localhost:9200/hspell/_analyze?analyzer=hunAnalyzer' -
d'administrations'

5.6.3 Overriding the stemming from a token filter
Sometimes you may not want to have words be stemmed, because either the stemmer treats
them incorrectly, or else you want to do exact matches on a particular word. You can
accomplish this by placing a keyword marker token filter before the stemming filter in the
chain of token filters. In this keyword marker token filter, you can specify either a list of words
or a file with a list of words that should not be stemmed.

 Other than preventing a word from being stemmed, it may be useful for you to manually
specify a list of rules to be used for stemming words. You can achieve this with the stemmer
override token filter, which allows you to specify rules like "cats => cat" to be applied. If the
stemmer override finds a rule and applies it to a word, that word not be stemmed by any
other stemmer.

 Keep in mind with both of these token filters, you'll need to make sure they are placed
before any other stemming filters, since they will protect the term from having stemming
applied by any other token filters later on in the chain.

5.7 Summary
• analysis is the process of making tokens out of the text in fields of your documents.

The same process is applied to your search string in queries such as the match query.
A document matches when its tokens match tokens from the search string

• each field is assigned an analyzer through the mapping. That analyzer can be defined in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

154

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

your Elasticsearch configuration or index settings. Or, it could be a default analyzer
• analyzers are processing chains made up by a tokenizer, which can be preceded by one

or more char filters and succeeded by one or more token filters
• char filters are used to process strings before passing them to the tokenizer. For

example, you can use the mapping char filter to change “&” to “and”
• tokenizers are breaking strings into multiple tokens. For example, the whitespace

tokenzier can be used to make a token out of each word delimited by a space
• token filters are used to process tokens coming from the tokenizer. For example, you

can use stemming to reduce a word to its root and make your searches work across
both plural and singular versions of that word

• ngram token filters make tokens out of portions of words. For example, make a token
out of every two consecutive letters. This is useful when you want your searches to
work even if the search string contains typos

• edge ngrams are like ngrams, but they only work from the beginning or the end of the
word. For example, you can take “event” and make “e”, “ev” and “eve”

• shingles are like ngrams at the phrase level. For example, you can generate terms out
of every two consecutive words from a phrase. This is useful when you want to boost
the relevance of multiple-word matches, like in the short description of a product. We'll
talk more about relevancy in the next chapter

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

155

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

7
Exploring your data with

Aggregations

This chapter covers

• metrics aggregations
• single and multi-bucket aggregations
• nesting aggregations
• relations among queries, filters and aggregations

So far in this book, we've concentrated on the use-case of searching: you have many
documents and the user wants to find the most relevant matches to some keywords. There
are more and more use-cases when users aren't interested in specific results. Instead, they
want to get statistics from a set of documents. These statistics might be hot topics for news,
revenue trends for different products, the number of unique visitors of your website, and
much more.

Aggregations in Elasticsearch solve this problem by loading the documents matching your
search, and doing all sorts of computations, such as counting the terms of a string field, or
calculating the average on a numeric field. Let's look at how aggregations works, using an
example from the get-together site we've worked with in previous chapters: a user entering
your site may not know what groups to look for. To give the user something to start with, you
could make the UI show the most popular tags for existing groups of your get-together site, as
illustrated in Figure 7.1.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

156

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 7.1 Example use-case of aggregations: top tags for get-together groups

Those tags would be stored in a separate field of your group documents. The user could
then select a tag, and filter down to only documents containing that tag. This makes it easier
for users to find groups relevant to their interests.

To get such a list of popular tags in Elasticsearch, you'd use aggregations, and in this
specific case, the terms aggregation, on the tags field, which counts occurrences of each term
in that field, and returns the most frequent terms. Many other types of aggregations are also
available, and we'll discuss them later in this chapter. For example, you can use a date
histogram aggregation to show how many events happened in each month of the last year,
the average aggregation to show you the average number of attendees for each event, or
even find out which users have similar taste for events as you do by using the significant
terms aggregation.

What about facets?
If you've used Lucene or Solr, or even Elasticsearch for some time, you might have heard about
facets. Facets are similar to aggregations, because they also load the documents matching your
query and perform computations in order to return statistics. As of version 1.2, Elasticsearch still
supports facets.

The main difference between aggregations and facets is that you can't nest multiple types of
facets in Elasticsearch, which limits the possibilities for exploring your data. For example, if you had
a blogging site, you can use the terms facet to find out the “hot topics” this year, or you can use
the date histogram facet to find out how many articles are posted each day, but you can't find the
number of posts per day, separately for each topic. You would be able to do that if you could nest
the date histogram facet under the terms facet.

Aggregations were born to remove this limit and allow you to get deeper insights from your
documents. For example, if you store your online shop logs in Elasticsearch, you can use
aggregations to find not only the best-selling products, but also best selling products in each
country, the trends for each product in each country and so on.
There are types of aggregations that don't have a facet equivalent, but there are no facets that can't
be done using aggregations. In practice, aggregations are the new facets in Elasticsearch, and this is
the reason why we'll skip facets in this book.

In this chapter, we'll first discuss the common traits of all aggregations: how you'd run them
and how they relate to the queries and filters you learned in previous chapters. Then, we'll

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

157

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

dive into the particularities of each type of aggregation, and in the end, we'll show you how to
combine different aggregation types.

AGGREGATION CATEGORIES: METRICS AND BUCKETS
Aggregations are divided in two main categories: metrics and bucket.

Metrics aggregations refer to the statistical analysis of a group of documents, resulting in
metrics such as the minimum value, maximum value, standard deviation and much more. For
example, you can get the average price of items from an online shop, or the number of unique
users logging on to it.

Bucket aggregations divide matching documents into one or more containers (buckets),
and then give you the number of documents in each bucket. The terms aggregation, that
would give you the most popular tags in figure 1, will make a bucket of documents for each
tag, and give you back the document count for each bucket.

Within a bucket aggregation, you can nest other aggregations – making the “child”
aggregation run on each bucket of documents generated by the “parent.” You can see an
example in figure 7.2 below.

Figure 7.2 The terms bucket aggregation allows you to nest other aggregations within it

Looking at the figure from the top down, you can see that if you're using the terms
aggregations to get the most popular group tags, you can also get the average number of
members for groups matching each tag. You could also ask Elasticsearch to give you, per tag,
the number of groups created in each month of the year.

As you may imagine, you can combine many types of aggregations in many ways. To get a
better view of the available options, we'll go though metrics and bucket aggregations, then
we'll discuss how you can combine them. But first, let's see what's common for all types of
aggregations: how to write them and how they relate to your queries.

7.1 Anatomy of an aggregation
All aggregations, no matter their type, follow some rules:

• You define them in the same JSON request as your queries, and you mark them by the
key aggregations or aggs. You need to give each one a name, specify the type and the
options specific to that type.

• They run on the results of your query. Documents that don't match your query are not

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

158

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

accounted for. Unless you include them with the global aggregation, which is a bucket
aggregation that will be covered later in this chapter.

• You can filter down results of your query more, without influencing aggregations. To do
that, you'd use post filters. For example, when searching for a keyword in an online
shop, you can build statistics on all items matching the keyword, but use post filters to
only show results that are in stock

Let's take a look at the popular terms aggregation, which you've already seen in the intro
to this chapter. The example use-case was getting the most popular subjects (tags) for
existing groups of your get-together site. We'll use this same terms aggregation to explore the
rules that all aggregations must follow.

7.1.1 Structure of an aggregation request
In listing 7.1, you'll run a terms aggregation that will give you the most frequent tags in the
get-together groups. The structure of this terms aggregation will apply to every other
aggregation.

Listing 7.1 Using the terms aggregation to get top tags

curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"aggregations" : { #A
 "top_tags" : { #B
 "terms" : { #C
 "field" : "tags.verbatim" #D
 }
 }
}}'
reply
[...]
 "hits" : { #E
 "total" : 5,
 "max_score" : 1.0,
 "hits" : [{
[...]
 "name": "Denver Clojure",
[...]
 "name": "Elasticsearch Denver",
[...]
 },
 "aggregations" : { #F
 "top_tags" : { #G
 "buckets" : [{
 "key" : "big data", #H
 "doc_count" : 3 #I
 }, {
 "key" : "open source",
 "doc_count" : 3
 }, {
 "key" : "denver",
 "doc_count" : 2
[...]
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

159

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Aggregations key indicates that this is the aggregations part of the request
#B Give the aggregation a name
#C Specify the aggregation type terms
#D Verbatim field is used to have “big data” as a single term, instead of “big” and “data” separately
#E The list of results is there anyway, as if you hit the _search endpoint with no query
#F Aggregation results begin here
#G Aggregation name, as specified
#H Each unique term is an item in the bucket
#I For each term, you see now many times it appeared

• At the top level, there's the aggregations key, which can be shortened to aggs.
• On the next level, you have to give the aggregation a name. You can see that name in

the reply. This is useful when you use multiple aggregations in the same request, so
you can easily see the meaning of each set of results.

• Finally, you have to specify the aggregation type terms, and the specific option. In this
case, we'll have the field name.

The aggregation request from listing 7.1 hits the _search endpoint, just like the queries
you've seen in previous chapters. In fact, you also get back 10 group results. This is all
because no query was specified, which will effectively run the match_all query you've seen in
chapter 4. So your aggregation will run on all the group documents. Running a different query
will make the aggregation run through a different set of documents.

Field data cache for faster aggregations
When you run a regular search, it goes pretty fast because of the nature of the inverted index: you
have a limited number of terms to look for; Elasticsearch will identify documents containing those
terms, and return the results. Aggregations, on the other hand, require more work because it has to
pull all those terms from fields you need to aggregate on, and then do the counting or other
computation.

To speed up things, Elasticsearch loads those terms in memory, in the field data cache. The more
terms it has to deal with, the more memory will be used by the field data cache. That's why you
have to make sure you have enough memory, especially when you're doing aggregations on large
numbers of documents, or if fields are analyzed and you have more than one term per document.

By default, the field data cache is unlimited, so running many expensive aggregations can trigger
an out-of-memory error. You can change the configuration to make old items expire
(indices.fielddata.cache.expire) and you can put a limit on the amount of memory that can be
occupied by this cache (indices.fielddata.cache.size). Another helpful feature is the “field data circuit
breaker,” which will raise an exception if an aggregation uses more field cache than a certain limit.
That limit can be adjusted via indices.fielddata.breaker.limit in the configuration or cluster settings.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

160

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

7.1.2 Aggregations run on query results
Computing metrics over the whole data set is just one of the possible use-cases for
aggregations. Often, you want to compute metrics in the context of a query. For example, if
you're searching for groups in Denver, you probably want to see the most popular tags for
those groups only. As you'll see in listing 7.2, this is the default behavior for aggregations.
Unlike in listing 7.1, where the implied query was match_all, here we query for Denver in the
location field, and aggregations will only be about groups from Denver.

Listing 7.2 Getting top tags for groups in Denver

curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "match": {
 "location": "Denver" #A
 }
},
"aggregations" : {
 "top_tags" : {
 "terms" : {
 "field" : "tags.verbatim"
 }
 }
}}'
reply
[...]
 "hits" : {
 "total" : 2, #B
 "max_score" : 1.44856,
 "hits" : [{
[...]
 "name": "Denver Clojure",
[...]
 "name": "Elasticsearch Denver",
[...]
 },
 "aggregations" : {
 "top_tags" : {
 "buckets" : [{
 "key" : "denver", #C
 "doc_count" : 2 #C
 }, {
 "key" : "big data", #C
 "doc_count" : 1 #C
[...]

#A In this query we only look for groups in Denver
#B Fewer results than in listing 7.1, because we only look for Denver groups
#C Tags are only counted for Denver groups, so they look different than in listing 7.1

FROM AND SIZE
Recall from chapter 4 that you can use the from and size parameters of your query control
the pagination of results. These parameters have no influence on aggregations, because
aggregations always run on all the documents matching a query.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

161

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

If you want to restrict query results more, without restricting aggregations, too, you can
use post filters. We'll discuss post filters and the relationship between filters and aggregations
in general next.

7.1.3 Filters and aggregations
In chapter 4 you saw that for most query types there is a filter equivalent. Because filters
don't calculate scores and are cacheable, they're faster than their query counterparts. You've
also learned that you should wrap filters in a filtered query, like this:

% curl localhost:9200/get-together/group/_search?pretty -d '{
"query": {
 "filtered": {
 "filter": {
 "term": {
 "location": "denver"
 }
 }
 }
}}'

Using the filter this way is good for the overall query performance, because the filter runs
first. Then, the query – which is typically more performance-intensive – runs only on
documents matching the filter. As far as aggregations are concerned, they only run on
documents matching the overall filtered query, as shown in Figure 7.3.

Figure 7.3 A filter wrapped in a filtered query runs first, and restricts both results and aggregations

“Nothing new so far,” you might say, “the filtered query behaves like any other query
when it comes to aggregations,” and you'd be right. But there is also another way of running
filters: by using a post filter, which will run after the query, and independent of the
aggregation. The following request will give the same results as the previous filtered query:

% curl localhost:9200/get-together/group/_search?pretty -d '{
"post_filter": {
 "term": {
 "location": "denver"
 }
}}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

162

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As illustrated in figure 7.4, the post filter differs from the filter in the filtered query in two
ways:

• Performance: The post filter runs after the query, making sure the query will run on all
documents, and the filter run only on those matching the query. The overall request is
typically slower than the filtered query equivalent, except when you have “expensive”
filters, like the script filter.

• Document set processed by aggregations: If a document doesn't match the post filter,
it will still be accounted for by aggregations.

Figure 7.4 Post filter runs after the query and doesn't affect aggregations

Now that you understand the relation between queries, filters and aggregations, as well as
the overall structure of an aggregation request, we can dive deeper into Aggregations Land
and explore different aggregation types. We'll start with metrics aggregations, then go to
bucket aggregations, then we'll discuss how to combine them to get powerful insights from
your data in real-time.

7.2 Metrics aggregations
Metrics aggregations are all about extracting statistics from groups of documents, or, as we'll
explore in section 7.4, buckets of documents coming from other aggregations.

These statistics are typically done on numeric fields, such as the minimum or average
price. You can get each such statistic separately, or you can get them together, via the stats
aggregation. More advanced statistics, such as the sum of squares or the standard deviation
are available through the extended_stats aggregation.

For both numeric and non-numeric fields you can get the number of unique values using
the cardinality aggregation, which will be shown in section 7.2.3.

7.2.1 Statistics
Let's begin looking at metrics aggregations by getting some statistics on the number of
attendees for each event. To do that, you'll need to index the sample dataset from the code
samples that come with the book.

Once you have the documents indexed by running populate.sh, you can see that event
documents contain an array of attendees. We can calculate the number of attendees at query

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

163

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

time, through a script, which we’ll show in the next listing. We discussed scripting in chapter
3, when you used them for updating documents. In general, with Elasticsearch queries you
can build a “script field”, where you put a (typically small) piece of code that returns a value
for each document. In this case, the value will be the count of elements of the attendees
array.

The flexibility of scripts comes with a price
Scripts are very flexible when it comes to querying, but you have to be aware of the caveats in
terms of performance and security.
Usually, scripts slow down aggregations, because they have to be run on every document. To avoid
the need of running a script, you can do the calculation at index time. In this case, you can extract
the number of attendees for every event and add it to a separate field before indexing it.
In most Elasticsearch deployments, the user specifies a query string and it's up to the server-side
application to construct the query out of it. But if you allow users to specify any kind of query,
including scripts, someone might exploit this and run malicious code.
Because of this, if you install Elasticsearch from a package it will run as its own user instead of root.
Also, running scripts is disabled by default. To enable it, you'd have to add the following line to your
elasticsearch.yml configuration file:
script.disable_dynamic: false

In the following listing, we'll request statistics on the number of attendees for all events. To
get the number of attendees in the script, we'll use doc['attendees'].values to get the
array of attendees. Adding the length method to that will return their number.

Listing 7.3 Getting stats for the number of event attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"size" : 0, #A
"aggregations": {
 "attendees_stats": {
 "stats": {
 "script": "doc['"'attendees'"'].values.length" #B
 }
 }
}}'
reply
[...]
 "aggregations" : {
 "attendees_stats" : {
 "count" : 15,
 "min" : 3.0,
 "max" : 5.0,
 "avg" : 3.8666666666666667,
 "sum" : 58.0
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

164

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A As we only care about aggregations, we don't ask for any result
#B Script to generate the number of attendees. Use “field” instead of “script” to point to a real field

You can see that we got back the minimum number of attendees per event, the maximum, the
sum, and the average. We also got the number of values these statistics were computed on.

SEPARATE STATISTICS
If you only need one of those statistics, you can get it separately. For example, the average
number of attendees per event will be calculated through the avg aggregation in this next
listing.

Listing 7.4 Getting the average number of event attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "attendees_avg": {
 "avg": {
 "script": "doc['"'attendees'"'].values.length"
 }
 }
}}'
reply
[...]
 "aggregations" : {
 "attendees_avg" : {
 "value" : 3.8666666666666667
 }
 }
}

Similar to the avg aggregation, you can get the other metrics through the min, max, sum and
value_count aggregations. You'd just have to replace avg from listing 7.4 with the needed
aggregation name. The advantage of separate statistics is that Elasticsearch won't spend time
computing metrics that you don't need.

7.2.2 Advanced statistics
In addition to statistics gathered by the stats aggregation, you can get the sum of squares,
variance and standard deviation of your numeric field by running the extended_stats
aggregation, shown in this next listing.

Listing 7.5 Getting extended statistics on the number of attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "attendees_extended_stats": {
 "extended_stats": {
 "script": "doc['"'attendees'"'].values.length"
 }
 }
}}'
reply
 "aggregations" : {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

165

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "attendees_extended_stats" : {
 "count" : 15,
 "min" : 3.0,
 "max" : 5.0,
 "avg" : 3.8666666666666667,
 "sum" : 58.0,
 "sum_of_squares" : 230.0,
 "variance" : 0.38222222222222135,
 "std_deviation" : 0.6182412330330462
 }
 }

All these statistics are calculated by looking at all the values in the document set matching the
query, so they're 100% accurate all the time. Next, we'll look at some statistics that use
approximation algorithms, trading some of the accuracy for speed and less memory
consumption.

7.2.3 Approximate statistics
Some statistics can be calculated with very good precision – though not 100% - by just
looking at some of the values from your documents. This will limit both their execution time
and their memory consumption.

Here, we'll look at how to get two types of such statistics from Elasticsearch: percentiles
and cardinality. Percentiles are values below which you can find X% of the total values, where
X is the given percentile. This is useful, for example, when have an online shop, you log the
value of each shopping cart, and you want to see in which price range are most shopping
carts. Maybe most of your users only buy an item or two and there are the upper 10% who
buy a lot of items and generate most of your revenue.

Cardinality is the number of unique values in a field. This is useful, for example, when you
want the number of unique IPs accessing your website.

PERCENTILES
For percentiles, let's think about the number of attendees for events once again, and
determine the maximum number of attendees we'll consider “normal,” and the number we'll
consider “high.” In listing 7.6, we'll calculate the 80th percentile and the 99th. We'll consider
numbers under the 80th to be normal, and numbers under the 99th high, and we'll ignore the
upper 1%, because they are “exceptionally high”.

To accomplish this, we'll use the percentiles aggregation and we'll set the percents
array to 80 and 99 in order to get these specific percentiles.

Listing 7.6 Getting the 80th and the 99th percentile from the number of attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "attendees_percentiles": {
 "percentiles": {
 "script": "doc['"'attendees'"'].values.length",
 "percents": [80, 99]
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

166

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
}}'
reply
 "aggregations" : {
 "attendees_percentiles" : {
 "values" : {
 "80.0" : 4.0,
 "99.0" : 5.0
 }
 }
 }

For small data sets like the code samples, you have 100% accuracy, but this may not happen
with large data sets in production. With the default settings, you have over 99.9% accuracy
for most data sets for most percentiles. The specific percentile matters, because accuracy is at
its worst for the 50th percentile, and as you go towards 0 or 100, it gets better and better.

You can trade memory for accuracy by increasing the compression parameter from the
default 100. Memory consumption increases proportionally to the compression, which in turn
controls now many values are taken into account when approximating percentiles.

CARDINALITY
For cardinality, let's imagine you want the number of unique members of your get-together
site. The following listing shows you how to do that with the cardinality aggregation.

Listing 7.7 Getting the number of unique members through the cardinality aggregation

curl localhost:9200/get-together/group/_search?pretty -d '{
"aggregations": {
 "members_cardinality": {
 "cardinality": {
 "field": "members"
 }
 }
}}'
reply
 "aggregations" : {
 "members_cardinality" : {
 "value" : 8
 }
 }

Like the percentiles aggregation, the cardinality aggregation is approximate. To understand
the benefit of such approximation algorithms, let's take a closer look at the alternative. Before
the cardinality aggregation was introduced in version 1.1.0, the common way to get the
cardinality of a field was by running the terms aggregation, you saw in section 7.1. Because
the terms aggregation will get the counts of each term for top N terms – where N is the
configurable size parameter – if you specify a size large enough, you could get all the unique
terms back. Counting them will give you the cardinality.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

167

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Unfortunately, this approach only worked for fields with relatively low cardinality and low
number of documents. Otherwise, running a terms aggregation with a huge size requires a lot
of resources:

• Memory: because all the unique terms need to be loaded in memory in order to be
counted.

• CPU: because those terms have to be returned in order – by default the order is on
how many times each term occurs.

• Network: because from each shard, the large array of sorted unique terms has to be
transferred to the node that received the client request. That node also has to merge
per-shard arrays into one big array and transfer it back to the client.

This is where approximation algorithms come into play. The cardinality field works with an
algorithm called HyperLogLog++ that hashes values from the field you want to examine, and
uses the hashes to approximate the cardinality. It loads only some of those hashes into
memory at once, so the memory usage will be constant no matter now many terms you have.

NOTE For more details on the HyperLogLog++ algorithm, have a look at the original paper from
Google: static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf

MEMORY AND CARDINALITY
We said the memory usage of the cardinality aggregation is constant, but how large that
constant would be? You can configure it though the precision_threshold parameter. The
higher the threshold, the more precise the results, but more memory is consumed. If you run
the cardinality aggregation on its own, it will take about precision_threshold times 8 bytes
of memory for each shard that gets hit by the query.

The cardinality aggregation, like all other aggregations, can be nested under a bucket
aggregation. When that happens, the memory usage is further multiplied by the number of
buckets generated by the “parent” aggregations.

TIP For most cases, the default precision_threshold will work well, because it provides a good
trade-off between memory usage and accuracy, and adjusts itself depending on the number of
buckets.

Next, we'll look at the choice of multi-bucket aggregations. But before going there, Table
7.1 gives you a quick overview of each metrics aggregation and the typical use-case.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

168

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://static.googleusercontent.com/media/research.google.com/fr/pubs/archive/40671.pdf
http://www.manning-sandbox.com/forum.jspa?forumID=871

Table 7.1 Metrics aggregations and typical use-cases

Aggregation type Example use-case

Stats Same product sold in multiple stores. Gather statistics on the price: how many
stores have it, what's the minimum, maximum and average price

individual stats (min, max,
sum, avg, value_count)

Same product sold in multiple stores. Show “prices starting from” and then the
minimum price.

extended_stats Documents contain results from a personality test. Gather statistics from that
group of people, such as the variance and the standard deviation.

Percentiles Access times on your website: what are “usual” delays and how long are the
longest response times.

Cardinality Number of unique IPs accessing your service

7.3 Multi-bucket aggregations
As you've seen in the previous section, metrics aggregations are about taking all your
documents and generating one or more numbers that describe them. Multi-bucket
aggregations are about taking those documents and putting them into buckets - like the group
of documents matching each tag. Then, for each bucket, you'll get one or more numbers that
describe the bucket, such as counting the number of groups for each tag.

This bucket approach comes in handy when nesting multiple kinds of aggregations, and
we'll discuss how you can do this in the next section. For now, let's see what kind of multi-
bucket aggregations are available and where they are typically useful.

• Terms aggregations are all about figuring out the frequency of each term in your
documents. There's the terms aggregation, which you've seen a couple of times
already, that gives you back the number of times each term appears. It's useful for
figuring out things like frequent posters on a blog or popular tags. There's also the
significant terms aggregation, which will give you back the difference between the
occurrence of a term in the whole index, and its occurrence in your query results. This
is useful for suggesting terms that are significant for the search context, like
“elasticsearch” would be for the context of “search engine”

• Range aggregations are all about figuring out how many documents fall into which
numerical, date or IP address range. This is useful when analyzing data where the user
has fixed expectations. For example, if someone is searching for the laptop in an online
shop, you know the price ranges that are most popular

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

169

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Histogram aggregations – either numerical or date – are similar to range aggregations,
but instead of requiring you to define each range, you have to define an interval, and
Elasticsearch will build buckets based on that interval. This is useful when you don't
know where the user is likely to look. For example, show a chart of how many events
occur each month.

Figure 7.5 shows an overview of the major types of multi-bucket aggregations.

Figure 7.5 Major types of multi-bucket aggregations

Next, let's zoom into each of these multi-bucket aggregations and see how you can use them.

7.3.1 Terms aggregations
We first looked at terms aggregation in section 7.1 as an example of how all aggregations
work. The typical use-case is to get the top frequent X, where X would be a field in your
document, like the name of a user, a tag or a category. Because the terms aggregation counts
every term and not every field value, you'll normally run this aggregation on a non-analyzed
field, because you want big data to be counted once, and not once for big and once for data.

You could use the terms aggregation to extract the most frequent terms from an analyzed
field, like the description of an event. You can use this information to generate a word cloud,
like the one in figure 7.6. Just make sure you have enough memory for loading all the fields in
memory, if you have many documents or the documents contain many terms.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

170

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 7.6 A terms aggregation can be used to get term frequencies and generate a word cloud

By default, the order of terms is by their count, descending, which fits all the top frequent
X use-cases. But you can order terms ascending, or by other criteria, like the term name
itself. The following listing shows how to list the group tags ordered alphabetically by using the
order property.

Listing 7.8 Ordering tag buckets by name

curl localhost:9200/get-together/group/_search?pretty -d '{
"aggregations": {
 "tags": {
 "terms": {
 "field": "tags.verbatim",
 "order": {
 "_term": "asc"
 }
 }
 }
}}'
reply
 "aggregations" : {
 "tags" : {
 "buckets" : [{
 "key" : "apache lucene",
 "doc_count" : 1
 }, {
 "key" : "big data",
 "doc_count" : 3
 }, {
 "key" : "clojure",
 "doc_count" : 1

If you're nesting a metric aggregation under your terms aggregation, you can order terms by
the metric, too. For example, you could use the average metric aggregation under your tags
aggregation from listing 7.7, to get the average number of group members per tag. And you
can order tags by the number of members by referring your metric aggregation name, like
avg_members: desc.

WHICH TERMS TO INCLUDE IN THE REPLY
By default, the terms aggregation will return only the top 10 terms by the order you selected.
You can, however, change that number though the size parameter. Setting size to 0 will get
you all the terms, but it's dangerous to use with a high-cardinality field, because returning a
very large result is CPU-intensive to sort and might saturate your network.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

171

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

To get back the top 10 terms – or the number of terms you configure with size -
Elasticsearch has to get the top 10 terms for each shard and aggregate the results. The
process is shown in the figure 7.7, with size=2 for clarity.

Figure 7.7 Sometimes, the overall top X is inaccurate, because only top X terms are returned per shard

This mechanism implies that you might get inaccurate counters for some terms, if those
terms don't make it into the top 10 for each individual shard. This can even result in missing
terms, like in the next figure where lucene, with a total value of 7, isn't returned in the top 2
overall tags because it didn't make the top 2 for each shard.

Figure 7.8 Reducing inaccuracies by increasing shard_size

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

172

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

To solve this problem, you can get more than 10 results from each shard by configuring
shard_size, while retaining the same value of size. You will trade some performance for this,
because aggregating larger per-shard result sets is more expensive.

At the other end of the accuracy spectrum, you could consider terms with low frequency
irrelevant and exclude them from the result set entirely. This is especially useful when you
sort terms by something else than frequency – which makes it likely for low-frequency terms
to appear – but don't want to “pollute” the results with irrelevant results like typos. To do that,
you'll need to change the min_doc_count setting from the default value of 1.

Finally, you can include and exclude specific terms from the result. You'd do that by using
the include and exclude options, and provide regular expressions as values. Using include
alone will include only terms matching the pattern, using exclude alone will include terms that
don't match. Using both will have exclude take precedence: included terms will match the
include pattern but won't match the exclude pattern.

The following listing will show you how to return counters for only tags containing “search.”

Listing 7.9 Creating buckets only for terms containing “search”

curl localhost:9200/get-together/group/_search?pretty -d '{
"aggregations": {
 "tags": {
 "terms": {
 "field": "tags.verbatim",
 "include": ".*search.*"
 }
 }
}}'
reply
 "aggregations" : {
 "tags" : {
 "buckets" : [{
 "key" : "elasticsearch",
 "doc_count" : 2
 }, {
 "key" : "enterprise search",
 "doc_count" : 1

SIGNIFICANT TERMS
The significant terms query is useful if you want to see which terms have higher frequencies
than normal in your current search results. Lets take the example of get-together groups: in
all the groups out there, the term clojure may not appear frequently enough to count. Let's
assume that it appears 10 times out of 1,000,000 terms (0.0001%). If you restrict your
search for Denver, let's say it appears 7 times out of 10,000 terms (0.007%). The percentage
is significantly higher than before and indicates a strong Clojure community in Denver,
compared to the rest. It doesn't matter that other terms, such as programming or devops
have a much higher absolute frequency.

The significant terms query is much like the terms query in the sense that it's counting
terms. But the resulting buckets are ordered by a score, which represents the difference in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

173

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

percentage between the foreground documents (that 0.007% in the previous example) and
the background documents (0.0001%). The foreground documents are those matching your
query and the background documents are all the documents from the index.

In the following listing, we'll try to find out which users of the get-together site have a
similar preference to Lee for events. To do that, we'll query for events where Lee attends, and
use the significant terms aggregation to see which event attendees participate to those events
more, compared to the overall set of events they attend to.

Listing 7.10 Finding attendees attending similar events to Lee

curl localhost:9200/get-together/event/_search?pretty -d '{
"query": {
 "match": {
 "attendees": "Lee" #A
 }
},
"aggregations": {
 "significant_attendees": {
 "significant_terms": {
 "field": "attendees", #B
 "min_doc_count": 2, #C
 "exclude": "lee" #D
 }
 }
}}'
reply
 "aggregations" : {
 "significant_attendees" : {
 "doc_count" : 5, #E
 "buckets" : [{
 "key" : "greg", #F
 "doc_count" : 3, #F
 "score" : 1.7999999999999998, #F
 "bg_count" : 3 #F
 }, {
 "key" : "mike", #G
 "doc_count" : 2, #G
 "score" : 1.2000000000000002, #G
 "bg_count" : 2 #G
 }, {
 "key" : "daniel", #H
 "doc_count" : 2, #H
 "score" : 0.6666666666666667, #H
 "bg_count" : 3 #H

#A Foreground documents are events Lee attends to
#B We need attendees that appear more in these events than overall
#C Take only attendees that participated to at least 2 events
#D Exclude Lee from the analyzed terms, he has the same taste as himself
#E Total number of events Lee attends to is 5
#F Greg has similar taste: attended 3 events in total, all of them with Lee
#G Mike is after him, with 2 events in total, all of them with Lee
#H Daniel is last. He went to 3 events, but only 2 of them with Lee

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

174

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As you might have guessed from the listing, the significant terms aggregation has the same
size, shard_size, min_doc_count, include and exclude options as the terms aggregation,
that let you control the terms you get back. In addition to those, it allows you to change the
background documents from all the documents in the index to only those matching a defined
filter in the “background_filter” parameter. For example, you may know that Lee only
participates in technology events, so you can filter those to make sure that events irrelevant
to him aren't taken into account.

Both the terms and significant terms aggregations work well for string fields. For numeric
fields, range and histogram aggregations are more relevant, and we'll look at them next.

7.3.2 Range aggregations
The terms aggregation is most often used with strings, but it works with numeric values, too.
This is useful when you have low cardinality, like when you want to give counts on how many
laptops have 2 years of warranty, how many have 3 and so on.

With high-cardinality fields, such as ages or prices, you're most likely looking for ranges.
For example, you may want to know how many of your users are between 18 and 39, how
many between 40 and 60, and so on. You can still do that with the terms aggregation, but it's
going to be tedious: in your application, you'd have to add up counters for ages 18, 19, and so
on until you get to 39 to get the first bucket. And if you want to add sub-aggregations, like the
ones you'll see later in this chapter, things will get even more complicated.

To solve this problem for numerical values, you have the range aggregation. Like the name
suggests, you'd give the numerical ranges you want, and it will count the documents with
values that fall in each bucket. You can use those counters to represent the data in a graphical
way, for example with a pie chart, as shown below.

Figure 7.9 Range aggregations give you counts of documents for each range. This is good for pie charts

Recall from chapter 3 that date strings are stored as type long in Elasticsearch,
representing the Unix time in milliseconds. To work with date ranges, you have a variant of
the range aggregation called the “date range aggregation.”

RANGE AGGREGATION
Let's get back to our get-together site example and do a breakdown of events by their number
of attendees. We'll do it with the range aggregation and give it an array of ranges. The thing
to keep in mind here is that the minimum value from the range (the key from) is included in

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

175

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

the bucket, while the maximum value (to) is excluded. In the next listing, we'll have three
categories:

• events with fewer than 4 members
• events with at least 4 members, but fewer than 6
• events with at least 6 members

NOTE Ranges don't have to be adjacent, they can be separated or they can overlap. In most
cases it makes sense to cover all values, but you don't need to.

Listing 7.11 Using a range aggregation to divide events by the number of attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "attendees_breakdown": {
 "range": {
 "script": "doc['"'attendees'"'].values.length", #A
 "ranges": [#B
 { "to": 4 }, #B
 { "from": 4, "to": 6 }, #B
 { "from": 6 } #B
] #B
 }
 }
}}'
reply
 "aggregations" : {
 "attendees_breakdown" : {
 "buckets" : [{
 "key" : "*-4.0",
 "to" : 4.0,
 "to_as_string" : "4.0",
 "doc_count" : 4 #C
 }, {
 "key" : "4.0-6.0",
 "from" : 4.0,
 "from_as_string" : "4.0",
 "to" : 6.0,
 "to_as_string" : "6.0",
 "doc_count" : 11
 }, {
 "key" : "6.0-*",
 "from" : 6.0,
 "from_as_string" : "6.0",
 "doc_count" : 0 #D

#A We use a script here to get the number, like in previous examples
#B The intervals we want to use for counting
#C For each interval, you're getting the document count
#D Even if that value is 0

You can see from Listing 7.11 that you don't have to specify both from and to for every range
in the aggregation. Omitting one of these parameters will remove the respective boundary and
this enables you to search for all events with less than 4 members, or with at least 6.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

176

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

DATE RANGE AGGREGATION
As you might imagine, the date range aggregation works just like the range aggregation,
except you put date strings in your range definitions. And because of that, you should define
the date format, so Elasticsearch will know how to translate the string you give it into the
numerical UNIX time, which is how date fields are stored.

In the following listing, we'll divide events in two categories: before July 2013 and starting
with July 2013. You can use a similar approach to count future events and past events, for
example.

Listing 7.12 Using a date rage aggregation to divide events by scheduled date

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "dates_breakdown": {
 "date_range": {
 "field": "date",
 "format": "YYYY.MM", #A
 "ranges": [
 { "to": "2013.07" }, #B
 { "from": "2013.07"} #B
]
 }
 }
}}'
reply
 "aggregations" : {
 "dates_breakdown" : {
 "buckets" : [{
 "key" : "*-2013.07",
 "to" : 1.3726368E12,
 "to_as_string" : "2013.07",
 "doc_count" : 8 #C
 }, {
 "key" : "2013.07-*",
 "from" : 1.3726368E12,
 "from_as_string" : "2013.07",
 "doc_count" : 7

#A Define here a format to parse the date strings
#B Ranges are defined in date strings, too
#C For each interval, you get the document count

If the value of the format field looks familiar, it's because it's the same Joda Time annotation
that you saw in chapter 3 when you defined date formats in the mapping. For the complete
syntax, you can look at the DateTimeFormat documentation:
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html

7.3.3 Histogram aggregations
For dealing with numeric ranges, you also have histogram aggregations. These are much like
the range aggregations we just saw, but instead of manually defining each range, you'd define
a fixed interval, and Elasticsearch will build the ranges for you. For example, if you want age

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

177

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

groups from people documents, you can define an interval of 10 (years) and you'd get buckets
like [0-10), [10-20) and so on.

Like the range aggregation, the histogram aggregation has a variant that works with dates,
called the date histogram aggregation. This is useful, for example, when building histogram
charts of how many Emails were sent on a mailing list each day.

HISTOGRAM AGGREGATION
Running a histogram aggregation is very similar to running a range aggregation. You just
replace the ranges array with an interval, and Elasticsearch will build ranges starting with
the minimum value, adding the interval until the maximum value is included. For example, in
the following listing, we specify an interval of 1 and show how many events have 3 attendees,
how many have 4, and how many have 5 attendees.

Listing 7.13 Histogram showing the number of events for each number of attendees

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "attendees_histogram": {
 "histogram": {
 "script": "doc['"'attendees'"'].values.length",
 "interval": 1 #A
 }
 }
}}'
reply
 "aggregations" : {
 "attendees_histogram" : {
 "buckets" : [{
 "key_as_string" : "3", #B
 "key" : 3, #B
 "doc_count" : 4
 }, {
 "key_as_string" : "4", #C
 "key" : 4, #C
 "doc_count" : 9
 }, {
 "key_as_string" : "5",
 "key" : 5,
 "doc_count" : 2

#A Interval used for building ranges. Here, we want to see every value
#B Keys show the “from” value of the range. “to” is key+interval
#C Next “from” is the previous “to”

Like the terms aggregation, the histogram aggregation lets you specify a min_doc_count
value, which is helpful if you want buckets with few documents to be ignored.

min_doc_count is also useful if you want to show empty buckets. By default, if there's an
interval between the minimum and maximum values that has no documents, that interval will
be omitted altogether. Set min_doc_count to 0 and those intervals will still appear with a
document count of 0.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

178

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

DATE HISTOGRAM AGGREGATION
As you might expect, you'd use the date histogram aggregation like the histogram one, but
you'd insert a date in the “interval” field. That date would be specified in the same Joda Time
annotation as the date range aggregation, with values such as “1M” or “1.5h”. For example,
the following listing will give the breakdown of events happening in each month.

Listing 7.14 Histogram of events per month

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "event_dates": {
 "date_histogram": {
 "field": "date",
 "interval": "1M" #A
 }
 }
}}'
reply
 "aggregations" : {
 "event_dates" : {
 "buckets" : [{
 "key_as_string" : "2013-02-01T00:00", #B
 "key" : 1359676800000, #B
 "doc_count" : 1
 }, {
 "key_as_string" : "2013-03-01T00:00",
 "key" : 1362096000000,
 "doc_count" : 1
 }, {
 "key_as_string" : "2013-04-01T00:00",
 "key" : 1364774400000,
 "doc_count" : 2
[…]

#A Interval here is specified as a date string
#B key_as_string is more useful here, because it's a more human-readable date format

Like the regular histogram aggregation, you can use the min_doc_count option to either show
empty buckets or to omit buckets containing just a few documents.

You probably noticed that the date histogram aggregation has two things in common with
all the other multi-bucket aggregations:

• It counts documents having certain terms.
• It creates buckets of documents falling in each category.

The buckets themselves are only useful when you nest other aggregations under the multi-
bucket aggregation; this allows you to have deeper insights of your data, and we'll look at
nesting aggregations in the next section. First, take time to look at Table 7.2, which gives you
a quick overview of the multi-bucket aggregations and what they're typically used for.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

179

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Table 7.2 Multi-bucket aggregations and typical use-cases

Aggregation type Example use-case

Terms Top tags on a blogging site; hot topics this week on a news site

significant terms Identify new technology trends by looking at what is used/downloaded a lot
this month compared to overall

range and date range Show entry-level, medium-priced and expensive laptops. Show archived
events, events this week, upcoming events

histogram and date
histogram

Show distributions: how much people of each age exercise. Or trends: items
bought each day

7.4 Nesting aggregations
The real power of aggregations is the fact that you can combine them. For example, if you
have a blog and you record each access to your posts, you can use the terms aggregation to
show the most viewed posts. But you can also nest a cardinality aggregation under this term
aggregation and show the number of unique visitors for each post, and even change the
sorting in the terms aggregation to show posts with the most unique visitors.

As you may imagine, nesting aggregations open a whole new range of possibilities for
exploring data. Nesting is the main reason aggregations emerged in Elasticsearch as a
replacement for facets, because facets couldn't be combined.

Multi-bucket aggregations are typically the point where you start nesting. For example, the
term aggregation allows you to show the top tags for get-together groups; this means you'll
have a bucket of documents for each tag. You can use sub-aggregations to show more metrics
for each bucket. For example, you can show how many groups are being created each month,
for each tag, as illustrated in Figure 7.10.

Figure 7.10 Nesting a date histogram aggregations under a terms aggregation

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

180

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

While multi-bucket aggregations are typically “parent” aggregations, the “children” can be
a metrics aggregation, too. For example, you can show the average number of group
members for each tag. There's nothing to nest under those average number, so metrics
aggregations will always be the last in a chain.

Later in this section, we'll also discuss one particular use-case for nesting in this section:
result grouping, which, unlike a regular search that gives you the top N results by relevance,
will give you the top N results for each bucket of documents generated by the “parent”
aggregation. Say you have an online shop and someone searches for “Windows.” Normally,
relevance-sorted results will show many versions of the Windows operating system first. This
may not be the best user experience, because at this point it's not 100% clear whether the
user is looking to buy a Windows operating system, some software built for Windows, or some
hardware that works with Windows. This is where result grouping, illustrated in figure 7.11,
comes in handy: you can show the top 3 results from each of the “operating systems,”
“software,” and “hardware” categories, and give the user a broader range of results. The user
may also want to click on the category name to narrow the search to that category only.

Figure 7.11 Nesting the top hits aggregation under a term aggregation to get result grouping

In Elasticsearch, you'll be able to get result grouping by using a special aggregation called
top hits. It retrieves the top N results, sorted by score or a criteria of your choice, for each
bucket of a parent aggregation. That parent aggregation can be a terms aggregation that's
running on your category field; we’ll go over this special aggregation in the next section.

The last nesting use-case we'll talk about is controlling the document set on which your
aggregations run. For example, regardless of the query, you might want to show the top tags
for get-together groups created in the last year. To do this, you'd use the filter
aggregation, which creates a bucket of documents that match the provided filter, in which you
can nest other aggregations.

7.4.1 Nesting multi-bucket aggregations
To nest an aggregation within another one, you just have to use the aggregations or aggs
key on the same level as the “parent” aggregation type, and then put the “child” aggregation
definition as the value. For multi-bucket aggregations, this can be done indefinitely. For
example, in listing 7.15, you'll use the terms aggregation to show the top tags. For each tag,
you'll use the date histogram aggregation to show how many groups were created each

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

181

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

month, for each tag. Finally, for each bucket of tag-and-created-month groups, we'll use the
range aggregation to show how many groups have fewer than 3 members, and how many
have at least 3.

Listing 7.15 Nesting multi-bucket aggregations three times

curl localhost:9200/get-together/group/_search?pretty -d '{
"aggregations": {
 "top_tags": { #A
 "terms": { #A
 "field": "tags.verbatim" #A
 },
 "aggregations": { #B
 "groups_per_month": { #C
 "date_histogram": { #C
 "field": "created_on", #C
 "interval": "1M" #C
 },
 "aggregations": { #D
 "number_of_members": {
 "range": { #E
 "script": "doc['"'members'"'].values.length",
 "ranges": [
 { "to": 3 },
 { "from": 3 }
]
 }
 }
 }
 }
 }
 }
}}'
reply
 "aggregations" : { #F
 "top_tags" : { #F
 "buckets" : [{ #F
 "key" : "big data", #F
 "doc_count" : 3, #F
 "groups_per_month" : { #G
 "buckets" : [{ #G
 "key_as_string" : "2010-04-01", #H
 "key" : 1270080000000, #H
 "doc_count" : 1, #H
 "number_of_members" : {
 "buckets" : [{
 "key" : "*-3.0",
 "to" : 3.0,
 "to_as_string" : "3.0", #I
 "doc_count" : 1 #I
 }, {
 "key" : "3.0-*",
 "from" : 3.0,
 "from_as_string" : "3.0",
 "doc_count" : 0
 }]
 }
 }, {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

182

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "key_as_string" : "2012-08-01", #J
[...] #K

#A Typical terms aggregation, giving top tags
#B Within it, use the "aggregation" key to define a child aggregation
#C This date histogram aggregation will run once for every top tag
#D We define a child aggregation for the date histogram, too
#E The range aggregation will run for every tag+month bucket
#F This is familiar, "big data" is the top tag, 3 documents
#G Next, we have buckets for each month where "big data" documents were created
#H One document was created in Jan 2010
#I Next, we find out that this document has less than 3 members
#J Nexts bucket of big data groups is created in August 2012
#K Analysis goes on, showing all buckets for "big data" and the rest of tags

As the “leaf” aggregation, you can always use a metrics aggregation. For example, if you
wanted the average number of group members instead of the 0-2 and 3+ ranges that you had
in the previous listing, you can use the “avg” or “stats” aggregations.

One particular type of aggregation we promised to cover in the last section is top hits. It
will get you the top N results, sorted by the criteria you like, for each bucket of its “parent”
aggregation. Next, we'll look at how you'll use the top hits aggregation to get result grouping.

7.4.2 Nesting aggregations to get result grouping
Result grouping is useful when you want to show the top results, grouped by a certain
category. Like in Google when you have many results from the same site, you sometimes only
see the top three or so, and then it moves on to the next site. You can always click on the
site's name to get all the results from it that match your query.

That's what result grouping is for: it allows you to give the user a better idea of what else
is in there. Say we want to show the user the most recent events, and to make results more
diverse, we'll show the most recent event for the most frequent attendees. We'll do this in
listing 7.16, by running the terms aggregation on the attendees field, and nest the top hits
aggregation under it.

Listing 7.16 Using the top hits aggregation to get result grouping

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "frequent_attendees": {
 "terms": {
 "field": "attendees", #A
 "size": 2 #A
 },
 "aggregations": {
 "recent_events": {
 "top_hits": { #B
 "sort": {
 "date": "desc" #C
 },
 "_source": { #D
 "include": ["title"] #D

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

183

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 },
 "size": 1 #E
 }
 }
 }
 }
}}'
reply
 "aggregations" : {
 "frequent_attendees" : {
 "buckets" : [{
 "key" : "lee", #F
 "doc_count" : 5, #F
 "recent_events" : {
 "hits" : { #G
 "total" : 5, #G
 "max_score" : 1.0, #G
 "hits" : [{ #G
 "_index" : "get-together", #G
 "_type" : "event", #G
 "_id" : "100", #G
 "_score" : 1.0, #G
 "_source":{"title":"Liberator and Immutant"}, #G
 "sort" : [1378404000000] #G
 }]
 }
 }
 }, {
 "key" : "shay",
 "doc_count" : 4,
 "recent_events" : {
 "hits" : {
[...]
 "_source":{"title":"Piggyback on Elasticsearch training in San

Francisco"},
[...]

#A This terms aggregation gives us the two users going to most events
#B The top hits aggregation will give us the actual events
#C Like with regular searches you can sort: we'll get the most recent first
#D Like with regular searches, you can select the fields to include
#E We'll use "size" to select the number of results per bucket
#F Lee is the most frequent one, with 5 events
#G Results look exactly, like the ones you get while querying

In order for the top hits aggregation to work, you need to have Elasticsearch 1.3 or later. At
first, it may look out of place to use aggregations for getting results grouping. But now that
you’ve learned what aggregations are all about, you can see that these concepts of buckets
and nesting are very powerful and enable you to do much more than just some statistics on
query results. The top hits aggregation is an example of a non-statistic outcome of
aggregations.

You're not limited only to query results when your run aggregations; this is the default
behavior, as you learned in section 7.1, but you can work around that if you need to. For
example, let's say that you want to show the most popular blog post tags on your blog,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

184

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

somewhere on a sidebar. And you want to show that sidebar no matter what the user is
searching for. To achieve this, you'd need to run your terms aggregation on all blog posts,
independent of your query. Here is where the “global” aggregation becomes useful: it
produces a bucket with all the documents of your search context (the indices and types you're
searching in) making all other aggregations nested under it to work with all these documents.

The “global” aggregation is one of the single-bucket aggregations that you can use to
change the document set other aggregations run on, and that's what we'll explore next.

7.4.3 Using single-bucket aggregations
As you saw in section 7.1, Elasticsearch will run your aggregations on the query results by
default. If you want to change this default, you'll have to use single-bucket aggregations.
Here's we'll discuss three of them:

• Global creates a bucket with all the documents of the indices and types you're
searching on. This is useful when you want to run aggregations on all documents, no
matter the query.

• Filter creates a bucket with all the documents matching a specified filter. This is useful
when you want to further restrict the document set, for example to only run
aggregations on items that are in stock.

• Missing creates a bucket with documents that don't have a specified field. It's useful
when you have another aggregation running on a field, but you want to do some
computations on documents that aren't covered by that aggregation, because the field
is missing. For example, when you want to show the average price of items across
multiple stores, and also want to show the number of stores not listing a price for those
items.

GLOBAL
Using our get-together site from the code samples, assume you're querying for events about
Elasticsearch, but you want to see the most frequent tags overall. For example, as we describe
earlier, if you want to show those top tags somewhere on a sidebar, independent of what the
user is searching for.

To achieve this, you need to use the global aggregation, which can alter the flow of data
from query to aggregations as shown in Figure 7.12.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

185

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 7.12 Nesting aggregations under the global aggregation makes them run on all documents

In listing 7.17, you'll nest the terms aggregation under the global aggregation to get the
most frequent tags on all documents, even if the query only looks for those with
elasticsearch in the title.

Listing 7.17 Global aggregation helps show top tags overall regardless of the query

curl localhost:9200/get-together/group/_search?pretty -d '{
"query": {
 "match": {
 "name": "elasticsearch"
 }
},
"aggregations": {
 "all_documents": { #A
 "global": {}, #A
 "aggregations": {
 "top_tags": {
 "terms": { #B
 "field": "tags.verbatim" #B
 }
 }
 }
 }
}}'
reply
[…]
 "hits" : { #C
 "total" : 2, #C
[…]
 "aggregations" : {
 "all_documents" : { #D
 "doc_count" : 5, #D
 "top_tags" : {
 "buckets" : [{
 "key" : "big data", #D
 "doc_count" : 3 #D
[…]

#A The global aggregation is the parent
#B The terms aggregation is nested under it, to work on all data

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

186

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#C The query returns two documents
#D But aggregations run on all five
#E The terms aggregation results are as if there was no query

When we say “all documents,” we mean all the documents from the search context defined in
the search URI. In this case we're searching in the group type of the get-together index, so
all the groups will be taken into account. If we searched in the whole get-together index, both
groups and events will be included in the aggregation.

FILTER
Remember the post filter from section 7.1? It's when you define a filter directly in the JSON
request, instead of wrapping it in a filtered query; the post filter will restrict the results you
get without affecting the aggregations.

The filter aggregation does the opposite: it will restrict the document set your aggregations
run on, without affecting the results. This is illustrated in figure 7.13.

Figure 7.13 The filter aggregation restricts query results for aggregations nested under it

If you're searching for events with “elasticsearch” in the title, you want to create a word
cloud from words within the description, but you only want to account for documents recent
enough. Let's say, after July 1st, 2013.

To do that, in the following listing you'd run a query as usual, but with aggregations, you'll
first have a filter aggregation restricting the document set to those after July 1st, and under it
you'll nest the terms aggregation that generates the word could information.

Listing 7.18 A filter aggregation will restrict the document set coming from the query

curl localhost:9200/get-together/event/_search?pretty -d '{
"query": {
 "match": {
 "title": "elasticsearch"
 }
},
"aggregations": {
 "since_july": {
 "filter": {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

187

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "range": {
 "date": {
 "gt": "2013-07-01T00:00"
 }
 }
 },
 "aggregations": {
 "description_word_cloud": {
 "terms": {
 "field": "description"
 }
 }
 }
 }
}}'
reply
[...]
 "hits" : {
 "total" : 7, #A
[...]
 "aggregations" : {
 "since_july" : {
 "doc_count" : 2, #B
 "description_cloud" : {
 "buckets" : [{
 "key" : "we",
 "doc_count" : 2
 }, {
 "key" : "with",
 "doc_count" : 2
[...]

#A The query returns 7 results
#B The description_cloud aggregation only runs on the two results matching the filter

MISSING
Most of the aggregations we looked at so far make buckets of documents and get metrics from
values of a field. If a document is missing that field, it will not be part of the bucket and it
won't contribute to any metrics.

For example, you might have a date histogram aggregation on event dates, but some
events have no date set yet. You can count them too, through the missing aggregation:

curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations": {
 "event_dates": {
 "date_histogram": {
 "field": "date",
 "interval": "1M"
 }
 },
 "missing_date": {
 "missing": {
 "field": "date"
 }
 }
}}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

188

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Like with other single-bucket aggregations, the missing aggregation allows you to nest
other aggregations under it. For example, you can use the max aggregation to show the
maximum number of people who intend to participate to a single event that doesn't have a
date set for now.

There are other important single-bucket aggregations that we didn't cover here: the
nested and reverse nested aggregations, which allow you to use all the power of aggregations
with nested documents.

Using nested documents is one of the ways to work with relational data in Elasticsearch.
The next chapter will include all you need to know about relations among documents,
including nested documents and nested aggregations.

7.5 Summary
• Aggregations help you get an overall view of query results, by counting terms and

computing statistics from resulting documents
• Aggregations are the new facets in Elasticsearch, as there are more types of

aggregations, and you can also combine them to get deeper insights of the data
• There are two main types of aggregations: bucket and metrics
• Metrics aggregations calculate statistics over a set of documents, such as the minimum,

maximum or average value of a numeric field
• Some metrics aggregations are calculated with approximation algorithms, which allow

them to scale a lot better than exact metrics. The percentiles and cardinality
aggregations work like this.

• Bucket aggregations put documents into one or more categories, and return counters
for those categories. For example, the most frequent posters in a forum. Bucket
aggregations can also be “parents” of other aggregations. “Children” aggregations run
one time for each bucket of the “parent”. You can use this, for example, to get the
average number of comments for blog posts matching each tag

• The top hits aggregation can be used as a “child” aggregation to implement result
grouping

• The terms aggregation is typically used for “top frequent users/locations/items/...” kind
of use-cases. Other multi-bucket aggregations are variations of the terms aggregation,
such as the significant terms aggregation, which returns those words that appear
more often in the query results than in the overall index

• The range and date range aggregations are useful for categorizing numeric and date
fields. The histogram and date histogram aggregations are similar, but they use fixed
intervals instead of manually defined ranges

• Single-bucket aggregations, such as the global, filter and missing aggregations,
are used to change the document set on which other aggregations run, which default to
the documents returned by the query.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

189

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

8
Relations among documents

This chapter covers

• objects and arrays of objects
• nested mapping, queries and filters
• parent mapping, has_parent and has_child queries and filters
• denormalization techniques

Some data is inherently relational. For example, with the get-together site we've used as an
example throughout the book, there are groups of people with the same interests, and
events organized by those groups. So how might you search for groups that host events about
a certain topic?

If your data is flat-structured, then you might as well skip this chapter and move on to
scaling out, which will be discussed next. This is typically the case for logs, where you have
independent field, such as timestamp, severity and message. If, on the other hand, you have
related entities in your data, like blog posts and comments, users and products and so on,
then by now you may wonder how should you best represent those relationships in your
documents, so you can run queries and aggregations across those relationships.

With Elasticsearch you don't have joins like an SQL database. As we'll discuss in section
8.4 on denormalizing (duplicating data), that's because having query-time joins in a
distributed system is typically slow, and Elasticsearch strives to be real-time and return query
results in milliseconds. On the upside, there are multiple ways to define relationships in
Elasticsearch. You can, for example, search for events based on their location, or search for
for groups based on properties of the events they host. We'll explore all the possibilities for
defining relationships among documents in Elasticsearch: object types, nested documents,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

190

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

parent-child relationships, and denormalizing, and explore the advantages and disadvantages
of each in this chapter.

8.1 Options for defining relationships among documents
First, let’s quickly define each of these approaches:

• Objects type: This allows you to have a sub-document as the value of a field in your
document. For example, your address field of an event could be an object with its own
fields: city, postal code, street name, and so on. You could even have an array of
addresses if the same event happens in multiple cities.

• Nested documents: The problem you may have with the object type is that all the data
is stored in the same document, so matches for a search can go across sub-documents.
For example, city=Paris AND street_name=Broadway could return an event that's
hosted in New York and Paris at the same time, even though there's no Broadway
street in Paris. Nested documents allow you to index the same JSON document, but will
keep your addresses in separate Lucene documents, making only searches like
city=New York AND street_name=Broadway return the expected result.

• Parent-child relationships between documents: This method allows you to use
completely separate Elasticsearch documents for different types of data, like events
and groups, but still define a relationship between them. For example, you can have
groups as “parents” of events, to indicate which event hosts which group. This will
allow you to search for events hosted by groups in your area, or for groups that host
events about Elasticsearch.

• Denormalizing: This is a general technique of duplicating data in order to represent
relationships. In Elasticsearch, you're likely to employ it to represent many-to-many
relationships, because other options only work on one-to-many. For example, if all
groups have members, and members could belong to multiple groups. You can
duplicate one side of the relationship, for example by including all the members of a
group in that group's document.

Before we dive into all the details of working with each possibility, we’ll overview them and
their typical use-cases.

8.1.1 Object type
The easiest way to represent a common interest group and the corresponding events is to use
the object type. This allows you to put a JSON object, or an array of JSON objects, as the
value of your field, like the example below:

{
 "name": "Denver technology group",
 "events": [
 {
 "date": "2014-12-22",
 "title": "Introduction to Elasticsearch"
 },

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

191

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 {
 "date": "2014-06-20",
 "title": "Introduction to Hadoop"
 }
]
}

If you want to search for a group with events that are about Elasticsearch, you can simply
search in the events.title field.

This works brilliantly for one-to-one relationships, but with one-to-many relationships you
might get unexpected results. For example, let's say you want to filter groups hosting Hadoop
meetings in December 2014. Your query can look like this:

"bool": {
 "must": [
 {
 "term": {
 "events.title": "hadoop"
 }
 },
 {
 "range": {
 "events.date": {
 "from": "2014-12-01",
 "to": "2014-12-31"
 }
 }
 }
]
}

This will match our sample document, because it has a title that matches hadoop, and a
date that's in the specified range. But this is not what we want: it's the Elasticsearch event
that's in December; the Hadoop one is in June. Sticking with the default object type is the
fastest and easiest approach to relations, but Elasticsearch is unaware of the boundaries
between documents, as illustrated in figure 8.1.

#A To the left: Elasticsearch event is in December, Hadoop event is in June
#B To the right: search for Hadoop events in December matches the document

Figure 8.1 Inner object boundaries are not accounted for when storing, leading to unexpected results

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

192

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

8.1.2 Nested type
If you need to make sure such cross-object matches don't happen, you can use the nested
type, which will index your events in separate Lucene documents. In both cases, the group's
JSON document will look exactly the same and applications will index them in the same way.
The difference is in the mapping, which triggers Elasticsearch to index nested inner objects in
adjacent, but separate Lucene documents, as illustrated in figure 8.2. When searching, you'll
need to use nested filters and queries, which will be explored in section 8.2; those will search
in all those Lucene documents.

Figure 8.2 Nested type makes Elasticsearch index objects as separate Lucene documents

In some use-cases, it's not a good idea to mash all the data in the same document, like
objects and nested types do. Take the case of groups and events: if a new event is organized
by a group, and all that group's data is in the same document, you'll have to re-index the
whole document just for that event. This can hurt performance and concurrency, depending on
how big those documents get, and how often those operations are done.

8.1.3 Parent-child relationships
With parent-child relationships, you can use completely different Elasticsearch documents, by
putting them in different types and defining their relationship in the mapping of each type. For
example, you can have events in one mapping type and groups in another, and you can
specify in the mapping that groups are “parents” of events. Also, when you index an event,
you can point it to the group that it belongs to, like in figure 8.3. At search time, you can use
has_parent or has_child queries and filters to take the other part of the relationship into
account. We'll discuss them later in this chapter as well.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

193

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.3 Different types of Elasticsearch documents can have parent-child relationships

8.1.4 Denormalizing
For any relational work, you have objects, nested documents and parent-child. These work for
one-to-one and one-to-many relationships, the “one parent with one or more children” kind.
There's also a fourth way, which is not a specific Elasticsearch feature, but a method often
employed by NoSQL data-stores to overcome the lack of joins: denormalizing, which means a
document will include data that's related to it, even if the same data will have to be duplicated
in another document.

For example, let's take groups and their members. A group can have more members, and
a user can be a member of more groups. Both have their own set of properties. To represent
this relationship, you can have groups as “parents” of the members. For users who are
members of multiple groups, you'd have to multiply their data: once for each group they
belong to, like in the figure below:

#A Next to one of the “Lee” labels: the document for Lee is stored twice: once for each group he is a

member of

Figure 8.4 Denormalizing is the technique of multiplying data to avoid costly relations

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

194

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

In the rest of this chapter, we'll take a deeper look at each of these techniques: objects and
arrays, nested, parent-child, and denormalizing. You'll learn how they work internally, how to
define them in the mapping, how to index and how to search those documents.

8.2 Object type: using sub documents as field values
As you saw back in chapter 2, documents in Elasticsearch can be hierarchical. For example, in
the code samples, an event of the get-together site has its location as an object with two
fields: name and geolocation.

{
 "title": "Using Hadoop with Elasticsearch",
 "location": {
 "name": "SkillsMatter Exchange",
 "geolocation": "51.524806,-0.099095"
 }
}

If you're familiar with Lucene, you may ask yourself, “How can Elasticsearch documents
be hierarchical, when Lucene only supports flat structures?” With objects, Elasticsearch
flattens hierarchies internally, by putting each inner field with its full path as a separate field in
Lucene. You can see the process in the following figure:

Figure 8.5 JSON hierarchical structure stored as a flat structure in Lucene

Typically, when you want to search in an event's location name, you'd refer to it as
location.name. We'll look at that in section 8.1.2, but before we go into searching, let's
define a mapping and index some documents.

8.2.1 Mapping and indexing objects
By default, inner object mappings are automatically detected. In listing 8.1, you will simply
index a hierarchical document and see how the detected mapping looks. If those events
documents look familiar to you, it's because the code samples store the location of an event in
an object, too. You can go to https://github.com/dakrone/elasticsearch-in-action to get the
code samples now if you haven't already.

Listing 8.1 Inner JSON objects are mapped as the object type

curl -XPUT 'localhost:9200/get-together/event-object/1' -d '{
 "title": "Introduction to objects",
 "location": { #A
 "name": "Elasticsearch in Action book", #A

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

195

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "address": "chapter 8" #A
 }
}'
curl 'localhost:9200/get-together/event-object/_mapping?pretty'
expected reply:
#{
"get-together" : {
"event-object" : {
"properties" : {
"location" : { #B
"properties" : { #B
"address" : { #B
"type" : "string" #B
}, #B
"name" : { #B
"type" : "string" #B
} #B
} #B
}, #B
"title" : {
"type" : "string"
}
}
}
}
#}

#A An object within the JSON document
#B Object's mapping is automatically detected with its properties. Like the “root” object

You can see that the inner object has a list of properties just like the root JSON object has.
You would configure field types from inner objects in the same way you'd do for fields in the
root object. For example, you can upgrade location.address to the multi_field type that
we've discussed in chapter 3. This will allow you to index the address in different ways, like
having a not_analyzed version for exact matches in addition to the default analyzed version.

TIP If you need to look at core types or the multi_field type, you can revisit chapter 3. For
more details on analysis, you can go back to chapter 5.

The mapping for a single inner object will also work if you have multiple such objects in an
array. For example, if you index the following document, the mapping from listing 8.1 will stay
the same.

{
 "title": "Introduction to objects",
 "location": [
 {
 "name": "Elasticsearch in Action book",
 "address": "chapter 8"
 },
 {
 "name": "Elasticsearch Guide",
 "address": "elasticsearch/reference/current/mapping-object-type.html"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

196

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

]
}'

To summarize, working with objects and arrays of objects in the mapping is very much like
working with the fields and arrays you saw in chapter 3. Next, we'll look at searches, which
also work like the ones you saw in chapters 4 and 6.

8.2.2 Searching in objects
By default, Elasticsearch will recognize and index hierarchical JSON documents with inner
objects without defining anything up front. As you can see in figure 8.6 below, the same goes
with searching. By default, you will have to refer to inner objects by specifying the path to the
field you're looking at, such as location.name.

Figure 8.6 You can search in an object's field by specifying that field's full path

As you worked through chapters 2 and 4, you indexed documents from the code samples.
You can now search through events happening in offices, as we do in listing 8.2, where you'll
specify the full path of location.name as the field to search on.

TIP If you didn't index the documents from the code samples yet, you can do it now by cloning
the repository at https://github.com/dakrone/elasticsearch-in-action and running the
populate.sh script.

Listing 8.2 Searching in location.name from events indexed by the code samples

EVENT_PATH="localhost:9200/get-together/event"
curl "$EVENT_PATH/_search?q=location.name:office&pretty"
relevant part of the result:
#[...]
"title": "Hortonworks, the future of Hadoop and big data",
#[...]
"location": {
"name": "SendGrid Denver office",
"geolocation": "39.748477,-104.998852"
#[...]
"title": "Big Data and the cloud at Microsoft",
#[...]
"location": {
"name": "Bing Boulder office",
"geolocation": "40.018528,-105.275806"
#[...]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

197

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

AGGREGATIONS
While searching, you would treat object fields like location.name in the same way as any
other field. The same works with the aggregations that you saw in chapter 7. For example, the
following terms aggregation get the most used words in the location.name field, that help
you build a word cloud:

% curl localhost:9200/get-together/event/_search?pretty -d '{
"aggregations" : {
 "location_cloud" : {
 "terms" : {
 "field" : "location.name"
 }
 }
}}'

OBJECTS WORK BEST FOR ONE-TO-ONE RELATIONSHIPS
One-to-one relationships are the perfect use-case for objects: you can search in the inner
object's fields as if they would be fields in the root document. That's because, in fact, they
are! At the Lucene level, location.name really is another field in the same flat structure.

You can also have one-to-many relationships with objects, by putting them in arrays. For
example, take a group with multiple members. If each member would have its own object,
you'd represent them like this:

"members": [
 {
 "first_name": "Lee",
 "last_name": "Hinman"
 },
 {
 "first_name": "Radu",
 "last_name": "Gheorghe"
 }
]

You can still search for members.first_name:lee and it will match “Lee” as expected.
However, you need to keep in mind that, in Lucene, the structure of the document looks more
like this:

"members.first_name": ["Lee", "Radu"],
"members.last_name": ["Hinman", "Gheorghe"]

As a result of how it's stored, if you search for members.first_name:lee AND

members.last_name:gheorghe, the document will still match, because it matches each of
those two criteria. This happens even though there's no member named “Lee Gheorghe”,
because Elasticsearch throws everything in the same document, and it's not aware of
boundaries between objects. To have Elasticsearch understand those boundaries, you can use
the nested type, coming up next.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

198

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Using objects to define document relationships: pros and cons
Before moving on, here's a quick recap of why you should (or why you shouldn't) use objects. The
plus points:
 • Easy to use. Elasticsearch detects them by default, in most cases you don't have to define
anything special upfront to index objects
 • Run queries and aggregations on objects like you would do with flat documents. That's because,
at the Lucene level, they are flat documents
 • No joins are involved. Because everything is in the same document, using objects will give you
the best performance of any of the options discussed in this chapter

The downsides:

 • No boundaries between objects. If you need such functionality, you need to look at other
options: nested, parent-child, denormalizing, and eventually combine them with objects if it suits
your use-case
 • Updating a single object will re-index the whole document

8.3 Nested type: connecting nested documents
Nested type is defined in the mapping much the same way as object type, which we've
already discussed. Internally, nested documents are indexed as different Lucene documents.
To indicate that you want to use the nested type instead of the object type, you'll have to set
type to nested, as you'll see in section 8.2.1.

From an application's perspective, indexing nested documents is the same as objects,
because the JSON document indexed as an Elasticsearch document looks the same. For
example:

{
 "name": "Elasticsearch News",
 "members": [
 {
 "first_name": "Lee",
 "last_name": "Hinman"
 },
 {
 "first_name": "Radu",
 "last_name": "Gheorghe"
 }
]
}

At the Lucene level, Elasticsearch will index the root document and all the members objects
in separate documents. But it will put them in a single block, as shown in figure 8.7.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

199

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.7 A block of documents in Lucene storing the Elasticsearch document with nested-type objects

Documents of a block will always stay together, ensuring they get fetched and queried with
the minimum number of operations.

Now that you know how nested documents work, let's see how to make Elasticsearch use
them. You have to specify that you want nested at index time and at search time:

• Inner objects must have a nested mapping, to get them indexed as separate
documents in the same block.

• Nested queries and filters need to be used to make use of those blocks while searching.

We'll discuss how you can do each in the next two sections.

8.3.1 Mapping and indexing nested documents
The nested mapping looks similar to the object mapping, except instead of the type being
object, you have to make it nested. In the following listing you will define a mapping with a
nested type field, and index the a document that with an array of nested sub-documents.

Listing 8.3 Mapping and indexing a nested documents

curl -XPUT localhost:9200/get-together/group-nested/_mapping -d '{
 "group-nested": {
 "properties": {
 "name": { "type": "string" },
 "members": {
 "type": "nested", #A
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" }
 }
 }
 }
 }
}'
curl -XPUT localhost:9200/get-together/group-nested/1 -d '{
 "name": "Elasticsearch News", #B
 "members": [
 {
 "first_name": "Lee", #C
 "last_name": "Hinman" #C
 },
 {
 "first_name": "Radu", #D
 "last_name": "Gheorghe" #D
 }
]
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

200

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A This signals Elasticsearch to index “members” objects in separate documents of the same block
#B This property goes in the main document
#C and #D These objects go into their own documents, part of the same block as the “parent” document

JSON objects with the nested mapping, like the ones you just indexed in listing 8.3, allow you
to search them with nested queries and filters. We'll explore those searches in just a bit, but
the thing to remember now is that nested queries and filters allow you to search within the
boundaries of such documents. For example, you will be able to search for groups with
members with the first name “Lee” and the last name “Hinman.” Nested queries won't do
cross-object matches, thus avoiding unexpected matches as “Lee” with the last name
“Gheorghe.”

ENABLING CROSS-OBJECT MATCHES
In some situations, you might need cross-object object matches as well. For example, if you're
searching for a group that has both Lee and Radu, a query like this would work for the
“regular” JSON objects we discussed in the section on the object type:

 "query": {
 "bool": {
 "must": [
 {
 "term": {
 "members.first_name": "lee"
 }
 },
 {
 "term": {
 "members.first_name": "radu"
 }
 }
]
 }
 }

This query would work, because when you have everything in the same document, both
criteria will match.

With nested document, a query structured this way won't work, because members objects
would be stored in separate Lucene documents. And there's no members object that will match
both criteria: we have one for Lee and one for Radu; we don't have any document containing
both.

In such situations, you might want to have both: objects for when you want cross-object
matches, and nested documents for when you want to avoid them. Elasticsearch lets you do
that through a couple of mapping options: include_in_root and include_in_parent.

INCLUDE_IN_ROOT
Adding include_in_root to your nested mapping will index the inner members objects twice:
one time as a nested document, and one time as an object within the root document, as
shown in the following figure.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

201

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.8 With include_in_root, fields of nested documents are indexed in the root document, too

The following mapping will let you use nested queries for the nested documents and the
regular queries for when you need cross-object matches.

 "members": {
 "type": "nested",
 "include_in_root": true,
 "properties": {
 "first_name": { "type": "string" },
 "last_name": { "type": "string" }
 }
 }

INCLUDE_IN_PARENT
Elasticsearch allows you to have multiple levels of nested documents. For example, if your
group can have members as it's nested “children,” members can have children of their own,
like the comments they posted on that group. Figure 8.9 illustrates this hierarchy.

Figure 8.9 include_in_parent indexes a nested document's field into the immediate parent, too

With the include_in_root option we just saw, you can add the fields at any level to the root
document, the “grandparent” in this case. There's also include_in_parent, which allows you
to index the fields of one nested document into the immediate parent document. For example,
listing 8.4 will include the comments into the members documents.

Listing 8.4 Using include_in_parent when there are multiple nested levels

curl -XPUT localhost:9200/get-together/group-multinested/_mapping -d '{
 "group-multinested": {
 "properties": {
 "name": { "type": "string" },
 "members": { #A
 "type": "nested", #A
 "properties": { #A
 "first_name": { "type": "string" },
 "last_name": { "type": "string" },

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

202

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "comments": { #B
 "type": "nested", #B
 "include_in_parent": true, #B
 "properties": {
 "timestamp": {
 "type": "date",
 "format": "dateOptionalTime"
 },
 "comment": { "type": "string" }
 }
 }
 }
 }
 }
 }
}'

#A “members” are nested documents relative to the root “group” document. No inclusion here
#B “comments” are nested documents of the “members”. Contents are also indexed as objects for the

parent “members” documents

By now you're probably wondering how you'd query these nested structures. This is exactly
what we'll be looking at next.

8.3.2 Searches and aggregations on nested documents
Like with mappings, when you run searches and aggregations on nested documents you'll
need to specify that the object you're looking at are nested. There are nested queries, filters
and aggregations that help you achieve this. Running these special queries and aggregations
will trigger Elasticsearch to join the different Lucene documents within the same block and
treat the resulting data as the same Elasticsearch document.

The way to search within nested documents is to use the nested query or nested filter.
As you might expect after chapter 4, these are equivalent, with the traditional differences
between queries and filters:

• Queries calculate score: thus they're able to return results sorted by relevance.
• Filters don't calculate score: making them faster and easier to cache.

TIP In particular, the nested filter isn't cached by default. You can change this by setting _cache
to true, like you can do in all filters.

If you want to run aggregations on nested fields, such as getting the most frequent group
members, you'll have to wrap them in a nested aggregation. If sub-aggregations have to
refer to the “parent” Lucene document – like showing top group tags for each member – you
can go up the hierarchy with the reverse nested aggregation.

NESTED QUERY AND FILTER
When you run a nested query or filter, you need to specify the path argument, to tell
Elasticsearch where those nested objects are located. In addition to that, your nested query or

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

203

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

filter will wrap a regular query or filter respectively. In listing 8.5, you'll search for members
with the first name “Lee” and the last name “Gheorghe,” and see that the document indexed
in listing 8.3 won't match, because you only have Lee Hinman and Radu Gheorghe, and no
member called Lee Gheorghe.

Listing 8.5 Nested query example

curl 'localhost:9200/get-together/group-nested/_search?pretty' -d '{
 "query": {
 "nested": {
 "path": "members", #A
 "query": { #B
 "bool": { #B
 "must": [
 {
 "term": {
 "members.first_name": "lee"
 }
 },
 {
 "term": {
 "members.last_name": "gheorghe" #C
 }
 }
]
 }
 }
 }
 }
}'

#A look for nested documents under the “members” object
#B the query would be the one that you'd normally run on objects within the same document
#C there's no member Lee Gheorghe. Change this to Hinman and it will match Lee Hinman

A nested filter would look exactly the same as the nested query you just saw. You'll just have
to replace the word “query” with “filter.”

SEARCHING IN MULTIPLE LEVELS OF NESTING
Elasticsearch also allows you to have multiple levels of nesting. For example, back in listing
8.6 you added a mapping that nests on two levels: members and their comments. To search
in the comments-nested documents, you'd have to specify members.comments as the path,
like in the following listing.

Listing 8.6 Indexing and searching multiple levels of nested documents

curl -XPUT localhost:9200/get-together/group-multinested/1 -d '{
 "name": "Elasticsearch News",
 "members": {
 "first_name": "Radu",
 "last_name": "Gheorghe",
 "comments": { #A
 "date": "2013-12-22",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

204

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "comment": "hello world"
 }
 }
}'
curl 'localhost:9200/get-together/group-multinested/_search -d '{
 "query": {
 "nested": {
 "path": "members.comments", #B
 "query": {
 "term": {
 "members.comments.comment": "hello" #C
 }
 }
 }
 }
} '

#A “comments” object is nested to the “members” object, also nested, as configured in listing 8.6
#B look in “comments”, which is under “members”
#C the query still provides still provides the full path to the field to look at

AGGREGATING SCORES OF NESTED OBJECTS
The nested query calculates the score, but we didn't mention how. Let's say you have three
members in a group: Lee Hinman, Radu Gheorghe and another guy called Lee Smith. If you
have a nested query for “Lee” it will match two members. Each inner “member” document will
get its own score, depending on how well it matches the criteria. But the query coming from
the application is for “group” documents, so Elasticsearch will need to give back a score for the
whole group document. At this point, there are four options, which can be specified with the
score_mode option:

• avg: This is the default option, which will take the scores of the matching inner
documents and return their average score

• total: This will sum up the matching inner documents' scores and return it. Useful when
the number of matches counts

• max: The maximum inner document score is returned
• none: No score is kept and counted towards the total document score

If you're thinking that there are too many options around the nested type, regarding
including in root or parent and the score options, have a look at table 8.1 to for a quick
reference on all those options and when they're useful.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

205

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Table 8.1 Nested type options

Option Description Example

include_in_parent: true Indexes the nested document in
the parent document, too.

“first_name:Lee AND last_name:Hinman”, for
which you need the nested type, as well as
“first_name:Lee AND first_name:Radu”, for
which you need the object type

include_in_root: true Indexes the nested document in
the root document

Same scenario as above, but you have multiple
layers. For example, event>member>comment

score_mode: avg Average score of matching
nested documents count

Search for groups hosting events about
“Elasticsearch”

score_mode: total Sums up nested document
scores

Search for groups hosting most events that
have to do with “Elasticsearch”

score_mode: max Maximum nested document
score

Search for groups hosting top events about
Elasticsearch

score_mode: none No score counts towards the
total score

Filter groups hosting events about
Elasticsearch. Use the nested filter instead

NESTED AND REVERSE NESTED AGGREGATIONS
In order to do aggregations on nested type objects, you'll have to use the nested aggregation.
This is a single-bucket aggregation, where you indicate the path to the nested object
containing your field. As shown in figure 8.10, the nested aggregation triggers Elasticsearch to
do the necessary joins in order for other aggregations to work properly on the indicated path:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

206

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.10 Nested aggregation doing necessary joins for other aggregations to work on the indicated path

For example, you'd normally run a terms aggregation on a member name field in order to get
the top users by the number of groups they are part of. If that name field is stored within the
members nested type object, you'll wrap that terms aggregation in a nested aggregation that
has the path set to members:

% curl localhost:9200/get-together/group/_search?pretty -d '{
 "aggregations" : {
 "members" : {
 "nested" : {
 "path" : "members"
 },
 "aggregations" : {
 "frequent_members" : {
 "terms" : {
 "field" : "members.name"
 }
 }
 }
 }
 }
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

207

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

You can put more aggregations under the members nested aggregation, and Elasticsearch
will know to look in the members type for all of them.

There are use-cases where you'd need to navigate back to the parent or root document.
For example, if you want for each of the obtained frequent members to show the top group
tags. To do that, you'll use the reverse_nested aggregation, which will tell Elasticsearch to
go up the nested hierarchy:

 "frequent_members" : {
 "terms" : {
 "field" : "members.name"
 },
 "aggregations": {
 "back_to_group": {
 "reverse_nested": {},
 "aggregations": {
 "tags_per_member": {
 "terms": {
 "field": "tags"
 }
 }
 }
 }
 }
 }

The nested and reverse nested aggregations can effectively be used to tell Elasticsearch in
which Lucene document to look for the fields of the next aggregation. This gives you the
flexibility to use all the aggregation types you saw in chapter 7 for nested documents, just as
you could use them for objects. The only downside for this flexibility is the performance
penalty.

PERFORMANCE CONSIDERATIONS
We will cover performance in more detail in chapter 10, but in general you can expect nested
queries and aggregations to be slower than the object counterparts. That's because
Elasticsearch needs to do some extra work to join multiple documents within a block. But
because of the underlying implementation using blocks, these queries and aggregations are
much faster than they would be if you had to join completely separate Elasticsearch
documents.

This block implementation also has its drawbacks. Because nested documents are stuck
together, updating or adding one inner document requires re-indexing the whole ensemble.
Applications also work with nested documents in a single JSON.

If your nested documents become big, like they would in a get-together site if you'd have
one document per group and all its events as nested, a better option might be to use separate
Elasticsearch documents and define parent-child relations between them.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

208

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Using nested type to define document relationships: pros and cons
Before moving on, here's a quick recap of why you should (or why you shouldn't) use nested
documents. The plus points:
 • Nested types are aware of object boundaries: no more matches for “Radu Hinman”!
 • Index the whole document at once, like you would with objects, after you defined your nested
mapping.
 • Nested queries and aggregations join the parent and child parts and you can run any query
across the union. This is a feature that no other option described in this chapter provides.
 • Query-time joins are fast, because all Lucene documents making the Elasticsearch document are
together in the same block in the same segment
 • Can include “child” documents in “parents” to get all the functionality from objects if you need it.
This functionality is transparent for your application

The downsides:
 • Queries will be slower than their object equivalent. If objects provide you all the needed
functionality, they are the better option because they're faster
 • Updating a “child” will reindex the whole document

8.4 Parent-child relationships: connecting separate documents
Another option for defining relationships among data in Elasticsearch is to define a type within
an index as a child of another type of the same index. This is useful when documents or
relations need to be updated often. You would define the relationship in the mapping, through
the _parent field. For example, you can see in the mapping.json file from the book's code
samples that events are children of groups, as illustrated in figure 8.11.

Figure 8.11 The relationship between events and groups as it's defined in the mapping

Once you have this relationship defined in the mapping, you can start indexing documents.
The parents (group documents in this case) are indexed normally. For children, (events in this
example) you need to specify the parent's ID in the _parent field. This will basically “point”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

209

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

the event to its group, and allow you to search for groups including some events criteria or the
other way around, like below.

Figure 8.12 The _parent field of each child document is pointing to the _id field of its parent

When it comes to searching, you can see some disadvantages of the parent-child approach
compared to nested:

• You only get the document type that you're searching for. When you search for groups,
for example, even if you specify some event criteria, you only get back group
documents. If you need the group's events as well, you'll need to get them with a
different request.

• Searches are slower. With nested documents, the fact that all inner objects are Lucene
documents in the same block pays dividends, because they can be joined easily into
the root document. Parent and child documents are completely different Elasticsearch
documents, and they can live in different Lucene segments of the same shard.

The parent-child approach shines when it comes to indexing, updating and deleting
documents. Because parent and child documents are different Elasticsearch documents, they
can be managed separately. For example, if a group has many events and you need to add a
new one, you just add that new event document. Using the nested-type approach,
Elasticsearch will have to re-index the group documents with the new event and all existing
events, which is much slower.

A parent document can either already be indexed or not when you index its child. This is
useful when you have lots of new documents and you want to index them asynchronously. For
example, you can index events on your website generated by users, and index the users, too.
Events may come from your logging system and users may be synchronized from a database.
You don't need to worry about making sure a user exists before you can index an event that
will have that user as a parent. If the user doesn't exist, the event is indexed anyway.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

210

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

But how would you index parent and child documents in the first place? This is exactly
what we'll explore next.

8.4.1 Indexing, updating and deleting child documents
We're only worrying about child documents here because parents are indexed as any other
document you've indexed so far. It's the child documents that must point to their parents, via
the _parent field.

NOTE Parents of a document type can be children of another type. You can have multiple levels
of such relationships, just as you can do with nested. You can even combine them. For example:
a group can have its members stored as nested type, and events separately stored as their
children.

When it comes to child documents, you have to define the _parent field in the mapping,
and when indexing, specify the parent's ID in the _parent field. The parent's ID and type will
also serve as the child's routing value.

Routing and routing values
You may recall from chapter 2 how indexing operations get distributed to shards by default: each
document you index has an ID, and that ID gets hashed. At the same time, each shard of the index
has an equal slice of the total range of hashes. The document you index goes to the shard that has
that document's hashed ID in its range.

The hashed ID is called the routing value, and the process of assigning a document to a shard is
called routing. Because each ID is different and you hash them all, the default routing mechanism
will evenly balance documents between shards.

You can also specify a custom routing value. We'll go into the details of using custom routing in
chapter 9, but the basic idea is that Elasticsearch hashes that routing value, and not the document's
ID to determine the shard. You'd use custom routing when you want to make sure multiple
documents are in the same shard, because hashing the same routing value will always give you the
same hash.

Custom routing becomes useful when you start searching, because you can provide a routing
value to your query. When you do, Elasticsearch only goes to the shard that corresponds to that
routing value, instead of querying all the shards. This reduces the load in your cluster a lot, and is
typically used for keeping each user's documents together.

The _parent field provides Elasticsearch with the ID and type of the parent document, which lets
it route the child documents to the same hash as the parent document. _parent is essentially a
routing value, and you benefit from it when searching. Elasticsearch will automatically use this
routing value to query only the parent's shard to get its children, or the child's shard to get its
parent.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

211

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The common routing value makes all the children of the same parent land in the same shard
as the parent itself. When searching, all the correlations that Elasticsearch has to do between
a parent and its children happen on the same node. This is much faster than broadcasting all
the child documents over the network in search of a parent. Another implication of routing is
that when you update or delete a child document, you need to specify the _parent field.

Next, we'll look at how you would practically do all those things:

• Defining the _parent field in the mapping.
• Indexing, updating and deleting child documents by specifying the _parent field.

MAPPING
Listing 8.7 shows the relevant part of the events mapping from the code samples. The
_parent field has to point to the parent type, in this case group.

Listing 8.7 _parent mapping from the code samples

% grep -A 10 ' "event' mapping.json
 "event" : { #A
 "_source" : {
 "enabled" : true
 },
 "_all" : {
 "enabled" : false
 },
 "_parent" : { #B
 "type" : "group" #B
 },
 "properties" : { #C

#A mapping for the “event” type starts here
#B _parent points to the “group” type
#C properties (fields) of the “event” type start here

INDEXING AND RETRIEVING
With the mapping in place, let's start indexing documents. Those documents have to contain
the parent value in the URI as a parameter. For our events, that value is the document ID of
the groups they belong to, like we have "2" for the Elasticsearch Denver group:

curl -XPOST 'localhost:9200/get-together/event/1103?parent=2' -d '{
 "host": "Radu,
 "title": "Yet another Elasticsearch intro in Denver"
}'

The _parent field is stored, so you can retrieve it later, and it's also indexed, so you can
search on its value. If you look at the contents of _parent for a group, you will see the type
you defined in the mapping, as well as the group ID you specified when indexing.

To retrieve an event document, you'd run a normal index request, and you also have to
specify the _parent value:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

212

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

% curl 'localhost:9200/get-together/event/1103?parent=2&pretty'
{
 "_index" : "get-together",
 "_type" : "event",
 "_id" : "1103",
 "_version" : 1,
 "found" : true, "_source" : {
 "host": "Radu",
 "title": "Yet another Elasticsearch intro in Denver"
}
}

The parent value is required because you can have multiple events with the same ID,
pointing to different groups. But the _parent and _id combination is unique. If you try to get
the child document without specifying its parent, you'll get an error saying that a routing value
is required. And the parent value is that routing value Elasticsearch is waiting for.

% curl 'localhost:9200/get-together/event/1103?pretty'
{
 "error" : "RoutingMissingException[routing is required for [get-

together]/[event]/[1103]]",
 "status" : 400
}

UPDATING
You'd update a child document through the Update API, in a similar way to what you did in
chapter 3, section 3.5. The only difference here is that you have to provide the parent again.
Like in the case of retrieving an event document, the parent is needed to get the routing value
of the event document you're trying to change. Otherwise, you'd get the same
RoutingMissingException you had earlier when trying to retrieve the document without
specifying a parent.

The following snippet adds a description to the document we've just indexed:

curl -XPOST 'localhost:9200/get-together/event/1103/_update?parent=2' -d '{
 "doc": {
 "description": "Gives an overview of Elasticsearch"
 }
}'

DELETE
To delete a single event document, you'd run a delete request like in chapter 3, section 3.6.1,
and add the parent parameter:

curl -XDELETE 'localhost:9200/get-together/event/1103?parent=2'

Delete by query works just as before: documents that match get deleted. This API doesn't
need parent values, and it doesn't take them into account either:

curl -XDELETE 'http://localhost:9200/get-together/event/_query?q=host:radu'

Speaking of queries, let's look at how you can search across parent-child relations.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

213

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://localhost:9200/get-together/event/_query?q=host:radu
http://www.manning-sandbox.com/forum.jspa?forumID=871

8.4.2 Searching in parent and child documents
With parent-child relations, like you have with groups and their events, you can search for
groups and add event criteria or the other way around. Let's see what the actual queries and
filters are that you'll use:

• has_child queries and filters are useful in searching for parents with criteria from their
children. For example, if you need groups hosting events about Elasticsearch

• has_parent queries and filters are useful when searching for children with criteria from
their parents. For example, events that happen in Denver. Because location is a group
property.

You get what you're searching for
All those searches will only return the “target” documents and not their parents or children. For
example, when searching for groups, you'll get back group documents. You won't get those groups'
events, even if your search included events criteria, like “give me the group that has_child of
name:Elasticsearch”.

If you want the events as well, you'll have to do another request, and you'll see how in the rest of
this section.

Nested documents work differently, because objects are joined together with the root document
and a search will get you back everything.

The same rationale applies to aggregations: you can run them on the child documents alone, or
on the parent documents. But, as of version 1.2, there's no way for aggregations to work across the
parent-child relationship. For example, if you want to get the top group tags, and then for each tag,
show a histogram of event dates, you'd have to go with objects or nested documents.

HAS_CHILD QUERY AND FILTER
If you want to search in groups hosting events about Elasticsearch, you can use the
has_child query or filter. The classic difference here is that filters don't care about scoring.

A has_child filter can wrap another filter or a query. It runs that filter or query against the
specified child type and collects the matches. The matching children contain the IDs of their
parents in the _parent field. Elasticsearch collects those parent IDs and removes the
duplicates – because the same parent ID can appear multiple times, once for each child – and
returns the list of parent documents. The whole process is illustrated in figure 8.13.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

214

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.13 has_child filter first runs on children, then aggregates results into parents, which are
returned

In Phase 1 of the figure:

• The application runs a has_child filter, requesting “group” documents with children of
type “event”, having “Elasticsearch” in their name

• The filter runs on the “event” type for documents matching “Elasticsearch”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

215

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Resulting “event” documents point to their respective parents. Multiple events can point
to the same group.

In Phase 2, Elasticsearch gathers all the unique group documents and returns them to the
application.

The filter from figure 8.13 would look like this:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "filtered": {
 "filter": {
 "has_child": {
 "type": "event",
 "filter": {
 "term": {
 "title": "elasticsearch"
 }
 }
 }
 }
 }
}}'

The has_child query runs in a similar way to the filter, except it can give a score to each
parent by aggregating child document scores. You'd do that by setting score_type to max,
sum, avg or none, like you can do with nested queries.

NOTE If the has_child filter can wrap a filter or a query, the has_child query can only wrap
another query.

For example, you can set score_type to max and get the following query to return groups
ordered by which one hosts the most relevant event about Elasticsearch:

% curl 'localhost:9200/get-together/group/_search?pretty' -d '{
"query": {
 "has_child": {
 "type": "event",
 "score_type": "max",
 "query": {
 "term": {
 "title": "elasticsearch"
 }
 }
 }
}}'

WARNING In order for has_child queries and filters to remove parent duplicates quickly, it
caches their IDs in memory. This may take a lot of JVM heap if you have lots of parent matches
for your queries.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

216

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

HAS_PARENT QUERY AND FILTER
has_parent is, as you might expect, the opposite of has_child. You'd use it when you want
to search for events, but include criteria from the groups they belong to.

The has_parent filter can wrap a query or a filter. It runs on the "parent_type" that you
provide, takes the parent results and returns the children pointing to their IDs from their
_parent field.

The following listing shows how to search for events about Elasticsearch, but only if they
happen in Denver.

Listing 8.8 has_parent query to find Elasticsearch events in Denver

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
"query": {
 "bool": { #A
 "must": [#A
 {
 "term": { #B
 "title": "elasticsearch" #B
 } #B
 },
 {
 "has_parent": {
 "type": "group",
 "query": {
 "term": { #C
 "location": "denver" #C
 } #C
 }
 }
 }
]
 }
}}'

#A The main query contains two must-have queries
#B This runs on the events, to make sure they have “elasticsearch” in their title
#C This runs on each event's group, to make sure events happen in Denver

Because a children only has a parent, there are no scores to aggregate, like it's the case with
has_child. By default, has_parent has no influence on the child's score ("score_type":
"none"). You can change "score_type" to "score" to make events inherit the score of their
parent groups.

Like the has_child queries and filters, has_parent queries and filters have to cache the
parent _id values to support fast lookups. That said, you can expect all those parent/child
queries to be slower than the equivalent nested queries. It's the price you pay for being able
to index and search all the documents independently.

You can think of nested documents as index-time joining and of parent-child relations as
query-time joins. With nested, a parent and all its children are “joined” in a single Lucene

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

217

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

block when indexing. By contrast, the _parent field allows different types of documents to be
correlated at query time.

Nested and parent-child structures are good for one-to-many relationships. For many-to-
many relationships, you'll have to employ a technique common in the NoSQL space:
denormalizing.

Using parent-child designation to define document relationship: pros and cons
Before moving on, here's a quick recap of why you should (or why you shouldn't) use parent-child
relationships. The plus points:
 • “Children” and “parents can be updated separately.
 • Query-time join performance is good, though not as good as with nested, because all related
documents are routed to the same shard.

The downsides:
 • You can only get back the parent or the child documents when you query.
 • Aggregations don't work across the relationship.

8.5 Denormalizing: using redundant data connections
Denormalizing is about multiplying data in order to avoid expensive joins. Let's take an
example we've already discussed: groups and events. It's a one-to-many relationship,
because an event can be hosted by only one group, and one group can host many events.

With parent-child or nested structures, groups and events are stored in different Lucene
documents, as shown in figure 8.14.

Figure 8.14 Hierarchical relationship (nested or parent-child) between different Lucene documents

This relationship can be denormalized by adding the group info to all the events, shown
below.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

218

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.15 Hierarchical relationship denormalized by copying group information to each event

Next, we'll look at how and when denormalizing helps, and how you would concretely index
and query denormalized data.

8.5.1 Use-cases for denormalizing
Let's start with the disadvantages: denormalized data takes more space and it's more difficult
to manage than normalized data. In the example from figure 8.15, if you change the group's
details, you have to update three documents, because those details appear three times.

On the positive side, you don't have to join different documents when you query. This is
particularly important in distributed systems, because having to join documents across the
network introduces big latencies, as you can see in figure 8.16 below.

Figure 8.16 Joining documents across nodes is difficult because of network latency

Nested and parent-child documents get around this by making sure a parent and all its
children are stored in the same node:

• Nested documents are indexed in Lucene blocks, which are always together in the same
segment of the same shard.

• Child documents are indexed with the same routing value as their parents, making
them belong to the same shard.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

219

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.17 Nested and parent-child relations make sure all joins are local

DENORMALIZING ONE-TO-MANY RELATIONS
Local joins done with nested and parent-child structures are much, much faster than remote
joins could be. Still, they more expensive than having no joins at all. This is where
denormalizing can help, but it implies there's more data. So your indexing operations will
cause more load because you'll index more data, and queries will run on larger indices,
making them slower.

You can see that there's a trade-off when it comes to choosing between nested, parent-
child and denormalizing. Typically, you'd denormalize for one-to-many relations if your data is
fairly small and static and you have lots of queries. This way, disadvantages hurt less – index
size acceptable, not too many indexing operations – and avoiding joins should make queries
faster.

TIP If performance is important to you, take a look at chapter 10, which is all about indexing and
searching fast.

DENORMALIZING MANY-TO-MANY RELATIONSHIPS
Many-to-many relationships are dealt with differently than one-to-many relationships in
Elasticsearch. For example, a group can contain multiple members and a person could be a
member of multiple groups.

Here, denormalizing is a much better proposition because, unlike one-to-many
implementations of nested and parent-child, Elasticsearch can't promise to contain many-to-
many relationships in a single node. As shown in figure 8.18, a single relationship may expand
to your whole dataset. This would make expensive, cross-network joins inevitable.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

220

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 8.18 Many-to-many relationships can contain a huge amount of data, making local joins impossible

Because of how slow cross-network joins would be, as of version 1.0, denormalizing is the
only way to represent many-to-many relationships in Elasticsearch. Figure 8.19 shows how
the structure of figure 8.17 looks when members are denormalized as “children” of each group
they belong to. We denormalize one side of the many-to-many relationship into more one-to-
many relationships.

Figure 8.19 many-to-many relation denormalized into multiple one-to-many relations, allowing local joins

Next, we'll look at how you can index, update and query a structure like the one in figure
8.19.

8.5.2 Indexing, updating, and deleting denormalized data
Before you start indexing, you have to decide how you want to denormalize your many-to-
many into one-to-many, and there are two big decision points: which side of the relationship
should you denormalize, and how you want to represent the resulting one-to-many
relationship.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

221

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

WHICH SIDE WILL BE DENORMALIZED?
Will members be multiplied as children of groups or the other way around? To pick one we
have to understand how data is indexed, updated, deleted and queries. The part that is
denormalized – the “child” – will be more difficult to manage on all aspects:

• You index those documents multiple times: once for each of its “parents.”
• When you update, you have to update all instances of that document.
• When you delete, you have to delete all instances.
• When you query for “children” separately, you'll get more hits with the same content,

so you have to remove duplicates yourself on the application side.

Based on these assumptions, it looks like it makes more sense to make members children
of groups. Member documents are smaller in size, change less often and are queried less often
than groups do with their events. As a result, managing cloned member documents should be
easier.

HOW YOU WANT TO REPRESENT THE ONE-TO-MANY RELATIONSHIP?
Will you have parent-child or nested documents? You'd choose here based on how often
groups and members are searched and retrieved together. Nested queries perform better and
give you both the parent and the children back in the same document.

Another important aspect is how often membership changes. Parent-child structures
perform better here because they can be updated separately.

For this example, let's assume that searching and retrieving groups and members together
is rare and that members often join and leave groups, so we'll go with parent-child.

INDEXING
Groups and their events would be indexed as before, but members have to be indexed once
for every group they belong to. The following listing will first define a mapping for the new
member type, and then index Mr. Hinman as a member of both the Denver Clojure and the
Denver Elasticsearch group from the code samples.

Listing 8.9 Indexing denormalized members

curl -XPUT 'localhost:9200/get-together/member/_mapping' -d '{
"member": {
 "_parent": { "type": "group"}, #A
 "properties": {
 "first_name": { "type": "string"},
 "last_name": { "type": "string"}
 }
}}'
curl -XPUT 'localhost:9200/get-together/member/10001?parent=1' -d '{
 "first_name": "Matthew", #B
 "last_name": "Hinman"
}'
curl -XPUT 'localhost:9200/get-together/member/10001?parent=2' -d '{
 "first_name": "Matthew", #B
 "last_name": "Hinman"
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

222

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A First we define the mapping, specifying that the parent type for members is “group”
#B parent=1 points to the Denver Clojure group
#C parent=2 points to the Denver Elasticsearch group

NOTE Multiple indexing operations can be done in a single HTTP request, by using the Bulk API.
We'll discuss the Bulk API in chapter 10, which is all about performance.

UPDATING
Once again, groups get lucky and you'd update them just as you've seen in chapter 3, section
3.5. But if a member changes its details, because it's denormalized, you'd first have to search
for all its duplicates, then you'll update each one. In the listing 8.10, we'll search for all the
documents that have and _id of “10001”, and update his first name to Lee, because that's
what he likes to be called.

We're searching for IDs instead of names, because IDs tend to be more reliable than other
fields, such as names. You may recall from the parent-child section that when you're using
the _parent field, multiple documents within the same type within the same index can have
the same _id value. Only the _id and _parent combination is guaranteed to be unique.
When denormalizing, you can use this “feature” and intentionally use the same _id for the
same person, once for each group they belong to. This allows you to quickly and reliably
retrieve all the instances of the same person by searching for their ID.

Listing 8.10 Updating denormalized members

curl 'localhost:9200/get-together/member/_search?pretty' -d '{
"query": {
 "filtered": {
 "filter": {
 "term": {
 "_id": "10001" #A
 }
 }
 }
},
"fields": ["_parent"] #B
}'
curl -XPOST 'localhost:9200/get-together/member/10001/_update?parent=1' -d '{
"doc": {
 "first_name": "Lee" #C
}
}'
curl -XPOST 'localhost:9200/get-together/member/10001/_update?parent=2' -d '{
"doc": {
 "first_name": "Lee" #C
}
}'

#A Searching for all the members with the same ID, which will return all the duplicates of this person
#B We only need the _parent field from each document, so we know how to update
#C For each of the returned documents, we update the name to “Lee”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

223

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

NOTE Multiple updates can also be done in a single HTTP request over the Bulk API. As with bulk
indexing, we'll discuss bulk updates in chapter 10.

DELETING
Deleting a denormalized member requires you to identify all the copies again. Recall from the
parent-child section that, in order to delete a specific document, you have to specify both the
_id and the _parent; that's because the combination of the two is unique in the same index
and type.

But what happens when you don't specify a _parent when deleting? Elasticsearch will
delete all the documents with the same ID, no matter the parent. And this is exactly what we
need when denormalizing.

To delete all the duplicates of Lee, you only need to send a delete request with his index,
type, ID:

curl -XDELETE 'localhost:9200/get-together/member/10001'

Now that you know how to index, update and delete in denormalized members, let's look
at how you can run queries on them.

8.5.3 Querying denormalized data
If you need to query groups, there's nothing denormalizing-specific, because groups are not
denormalized. Even if you need to criteria from their members, you'd use the has_child
query as you did in section 8.3.2.

Members got the shortest straw with queries, too. Because they're denormalized. You can
search for them, even including criteria from the groups they belong to with the has_parent
query. But there's a problem: you'd get back identical members. In listing 8.11, we'll index
another two members, and when you search, you'll get them both back.

Listing 8.11 Querying for denormalized data may return duplicate results

curl -XPUT 'localhost:9200/get-together/member/10002?parent=1' -d '{
 "first_name": "Radu", #A
 "last_name": "Gheorghe"
}'
curl -XPUT 'localhost:9200/get-together/member/10002?parent=2' -d '{
 "first_name": "Radu", #A
 "last_name": "Gheorghe"
}'
curl -XPOST 'localhost:9200/get-together/_refresh'
curl 'localhost:9200/get-together/member/_search?pretty' -d '{
"query": {
 "term": {
 "first_name": "radu" #B
 }
}}'
####relevant results
"hits" : [{
"_index" : "get-together",
"_type" : "member",

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

224

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

"_id" : "10002",
"_score" : 2.871802, "_source" : { #C
#"first_name": "Radu",
#"last_name": "Gheorghe"
#}
}, {
"_index" : "get-together",
"_type" : "member",
"_id" : "10002",
"_score" : 2.5040774, "_source" : { #C
#"first_name": "Radu",
#"last_name": "Gheorghe"
#}
}]

#A Indexing a person twice, once for each group
#B Searching for the person by name
#C The same person is returned twice, once for each group

As of version 1.2, you can only remove those duplicate members from your application. Once
again, if the same person always has the same ID, you can use that ID to make this task
easier: two results with the same ID are identical.

The same problem appears with aggregations: if you want to count some properties of the
members, those counts will be inaccurate because the same member appears in multiple
places.

The workaround that works for most searches and aggregations is to maintain a copy of all
members in a separate index. Let's call it “members.” Querying that index will return just that
one copy of each member. The problem with this workaround is that it helps only when you
query members alone. If you need criteria from the groups they belong to, you need to query
the get-together index and remove duplicate results from your application.

Using denormalization to define relationships: pros and cons
As we did with the other methods, we'll have a quick overview of the strengths and weaknesses of
denormalizing. The plus points:
 • the only way to work with many-to-many relationships
 • no joins are involved, making querying faster, if your cluster can handle the extra data caused
by duplication

The downsides:
 • your application has to take care of duplicates when indexing, updating, and deleting
 • some searches and aggregations will not work as expected because data is duplicated

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

225

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

8.6 Summary
Lots of use cases have to deal with relational data, and in this chapter we saw how you can
deal with:

• Object mapping, mostly useful for one-to-one relationships
• Nested documents, and parent-child structures, which deal with one-to-many

relationships.
• Denormalizing, which is mostly helpful with many-to-many relationships.

Joining hurts performance, even when it's local, so it's typically a good idea to put as many
properties as you can in a single document. Object mapping helps with this, because it allows
hierarchies in your documents. Searches and aggregations work here as they do with a flat-
structured document, you just have to refer to fields using their full path, like location.name.

When you need to avoid cross-object matches, nested and parent/child documents are
available to help:

• Nested documents are basically index-time joins, putting multiple Lucene documents in
a single block. To the application, the block looks like a single Elasticsearch document

• The _parent field allows you to point a document to another document of another type
in the same index, to be its “parent”. Elasticsearch will use routing to make sure a
parent and all its children land in the same shard, so that it can perform a local join at
query time

You can search nested and parent-child documents with the following queries and filters:

• Nested query and filter
• has_child query and filter
• has_parent query and filter

Aggregations work across the relationship only with nested documents, through the nested
and reverse nested aggregation types.

Objects, nested and parent-child documents, as well as the generic technique of
denormalizing, can be combined in any way, so you can get a good mix of performance and
functionality.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

226

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

10
Improving performance

This chapter covers:

• Bulk, multiget and multisearch API
• Refresh, flush, merge and store
• Filter caches and tuning filters
• Tuning scripts
• Query warmers
• Balancing JVM heap size and OS caches

Elasticsearch is commonly referred to as “fast” when it comes to both indexing, searching, and
extracting statistics through aggregations. “Fast” is quite a vague concept, making the “how
fast?” question inevitable. As with everything, “how fast” depends on the particular use case,
hardware and configuration.

In this chapter, our aim is to show you the best practices for configuring Elasticsearch, so
you can make it perform well for your use case. In every situation, you need to trade
something for speed, so you need to pick your battles:

• Application complexity: In the first part of the chapter, we'll show you how you can
group multiple requests, such as index, update, delete, get, and search in a single
HTTP call. This grouping is something your application needs to be aware of, but it can
speed up your overall performance by a huge margin. Think 20 or 30 times better
indexing because you'll have fewer network trips.

• Indexing speed for search speed, or the other way around: In the second section
of the chapter, we'll take a deeper look at how Elasticsearch deals with Lucene
segments: how refreshes, flushes, merge policies and store settings work, and how
they influence index and search performance. Often, tuning for indexing performance

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

227

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

has a negative impact on searches and vice versa.
• Memory: A big chunk of Elasticsearch's speed is cause by caching. Here's we'll dive

into the details of the filter cache and how to use filters to make the best use of it. We'll
also look at the shard query cache and how to leave enough room for the operating
system to cache your indices, while still leaving enough heap size for Elasticsearch. If
running a search on cold caches gets unacceptably slow, you'll be able to keep caches
warm by running queries in the background with index warmers.

• All of the above: Depending on the use-case, the way you analyze the text at index
time and the kind of queries you use can be more complicated, slow down other
operations, or use more memory. In the last part of the chapter, we'll explore the
typical trade-offs you have while modeling your data and your queries: should you
generate more terms when you index or look through more terms when you search?
Should you take advantage of scripts or try to avoid them? How should you handle
deep paging?

We'll discuss all these points and answer these questions in this chapter. By the end, you
will learn how to make Elasticsearch fast for your use-case, and get a deeper understanding of
how it works along the way.

For improving performance, grouping multiple operations in a single HTTP request is often
the easiest and gives the most performance gain. So let's start by looking at how you can do
that through the Bulk, Multiget and Multisearch APIs.

10.1 Grouping requests
The single best thing you can do for faster indexing is to send multiple documents to be
indexed at once, via the bulk API. This will save network round-trips and allow for more
indexing throughput. A single bulk can accept any indexing operation, for example you can
create documents or overwrite them. You can also add update or delete operations to a bulk;
it's not only for indexing.

If your application needs to send multiple get or search operations at once, there are bulk
equivalents for them, too: the multiget and multisearch APIs. We'll explore them later, but the
bulk API is more popular because in production it's “the way” to index for most use-cases. So
we'll look at it first.

10.1.1 Bulk indexing, updating and deleting
So far in this book you've indexed documents one at a time. This is fine for playing around,
but it implies performance penalties from at least two directions:

• Your application has to wait for a reply from Elasticsearch before it can move on.
• Elasticsearch has to process all data from the request for every indexed document.

If you need more indexing speed, Elasticsearch offers a Bulk API, which you can use to
index multiple documents at once, as shown in figure 10.1.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

228

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 10.1 Bulk indexing allows you to send multiple documents in the same request

As the figure illustrates, you can do that using HTTP, as you've used for indexing
documents so far, and you'll get a reply containing the results of all the indexing requests.

INDEXING IN BULKS
In listing 10.1, you'll index a bulk of two documents. To do that, you have to do an HTTP POST
to the _bulk endpoint, with data in a specific format. The format has the following
requirements:

• Each indexing request is composed by 2 JSON documents separated by a newline: one
with the operation (“index” in our case) and meta-data (like index, type, and ID), and
one with the document contents.

• JSON documents should be one per line. This implies that each line needs to end with a
newline (\n, or the ASCII 10 character), including the last line of the whole bulk of
requests.

Listing 10.1 Indexing two documents in a single bulk
REQUESTS_FILE=/tmp/test_bulk #A
echo '{"index":{"_index":"get-together", "_type":"group", "_id":"10"}} #B#C
{"name":"Elasticsearch Bucharest"} #B#D
{"index":{"_index":"get-together", "_type":"group", "_id":"11"}} #B#C
{"title":"Big Data Bucharest"}' > $REQUESTS_FILE #B#D
curl -XPOST localhost:9200/_bulk --data-binary @$REQUESTS_FILE #A

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

229

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Using a file, and point to it via “--data-binary @file-name”, to preserve new-line characters
#B Every JSON needs to end in a new-line (including the last one) and can't be pretty-printed
#C First line of the requests contains operation (index) and meta-data (index,type,ID)
#D Document content

From each of the two indexing requests, in the first line, you added the operation type and
some meta-data. The main field name is the operation type: it indicates what Elasticsearch
has to do with the data that follows. For now, we've used index for indexing, and this
operation will overwrite documents with the same ID if they already exist. You can change
that to create, to make sure documents don't get overwritten, or even update or delete, to
update or delete multiple documents at once, as you can see later.

_index and _type indicate where to index each document. You can put the index name,
or both the index and the type in the URL. This will make them the default index and type for
every operation in the bulk. For example:

curl -XPOST localhost:9200/get-together/_bulk --data-binary @$REQUESTS_FILE
or
curl -XPOST localhost:9200/get-together/group/_bulk –data-binary @$REQUESTS_FILE

You can then omit the _index and _type fields from the request itself. If you specify
them, index and type values from the request override those from the URL.

The _id field indicates the ID of the document you're indexing. If you omit that,
Elasticsearch will automatically generate an ID for you, which is helpful if you don't already
have (or don't need) a unique ID for your documents. Logs, for example, work well with
generated IDs because they don't typically have a natural unique ID and you don't need to
retrieve logs by ID.

Automatic ID generation and the “create” operation
When you omit the ID from your bulk requests, Elasticsearch generates a random 22-character ID
for each document. The chances of getting the same ID for two documents are extremely low.

Since the point of automatic ID generation is to have unique IDs, Elasticsearch will automatically
change your index operation to create. This helps in the unlikely case of an ID clash because, as
you'll see later, you can use the bulk response to check the result of each operation. And if there is
an ID clash, you'll see that the operation failed.

Automatic ID generation isn't something specific to bulk indexing. You can index a single
document like that by omitting the ID, and using HTTP POST instead of PUT. For example:
 curl -XPOST localhost:9200/cds/music/ -d {"title":"random album"}'

Similarly, you can choose between index and create operations when you index single
documents by using the op_type parameter:
 curl -XPOST localhost:9200/cds/music/1?op_type=create -d {"title":"new"}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

230

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

If you don't need to provide IDs, and you index all documents in the same index and type, the
bulk request from listing 10.1 gets quite a lot simpler, as shown in the following listing:

Listing 10.2 Indexing two documents in the same index and type, with automatic IDs
REQUESTS_FILE=/tmp/test_bulk
echo '{"index":{}} #A
{"title":"Elasticsearch Bucharest"}
{"index":{}} #A
{"title":"Big Data Bucharest"}' > $REQUESTS_FILE
URL='localhost:9200/get-together/group' #B
curl -XPOST $URL/_bulk?pretty --data-binary @$REQUESTS_FILE

#A only specifying the operation, because index and type are provided in the URL, and IDs will be
automatically generated

#B Specifying the index and type in the URL

The result of your bulk insert should be a JSON containing the time it took to index your bulk,
and the responses for each operation. Something like this:

{
 "took" : 2,
 "items" : [{
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "ijtvcHVmQd2a1qbDteQn0Q",
 "_version" : 1,
 "ok" : true
 }
 }, {
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "2QUsVotNSgKfC3_IZvzLrQ",
 "_version" : 1,
 "ok" : true
 }
 }]
}

Note that, because you've used automatic ID generation, the index operations were
changed to create. If one document can't be indexed for a reason, it doesn't mean the whole
bulk has failed, because items from the same bulk are independent of each other. That's why
you get a reply for each operation, instead of one for the whole bulk. You can use the
response JSON in your application, to determine which operation succeeded and which failed.

UPDATING OR DELETING IN BULKS
Within a
https://www.google.ro/search?q=mvn+skip+tests&oq=mvn+skip+&aqs=chrome.1.69i57j0l3.
2493j0&sourceid=chrome&ie=UTF-8 single bulk, you can have any number of index or create
operations, and also any number of update or delete operations.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

231

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://www.google.ro/search?q=mvn+skip+tests&oq=mvn+skip+&aqs=chrome.1.69i57j0l3.2493j0&sourceid=chrome&
https://www.google.ro/search?q=mvn+skip+tests&oq=mvn+skip+&aqs=chrome.1.69i57j0l3.2493j0&sourceid=chrome&
http://www.manning-sandbox.com/forum.jspa?forumID=871

update operations look similar to the index/create operations we've just discussed, except
for the fact that you must specify the ID. Also, the document content would contain doc or
script, according to the way you want to update, just like you specified doc or script in
chapter 3, when you did individual updates.

delete operations are a bit different than the rest, because you have no document
content. You just have the meta-data line, like with updates, has to contain the document's
ID.

In listing 10.3, you'll have a bulk that contains all four operations: index, create, update
and delete.

Listing 10.3 Bulk with index, create, update and delete
echo '{"index":{}}
{"title":"Elasticsearch Bucharest"}
{"create":{}}
{"title":"Big Data in Romania"}
{"update":{"_id": "11"}} #A
{"doc":{"created_on" : "2014-05-06"} } #A
{"delete":{"_id": "10"}}' > $REQUESTS_FILE #B
URL='localhost:9200/get-together/group'
curl -XPOST $URL/_bulk?pretty --data-binary @$REQUESTS_FILE
expected reply
 "took" : 37,
 "errors" : false,
 "items" : [{
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "rVPtooieSxqfM6_JX-UCkg",
 "_version" : 1,
 "status" : 201
 }
 }, {
 "create" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "8w3GoNg5T_WEIL5jSTz_Ug",
 "_version" : 1,
 "status" : 201
 }
 }, {
 "update" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "11",
 "_version" : 2, #C
 "status" : 200
 }
 }, {
 "delete" : {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "10",
 "_version" : 2, #C
 "status" : 200,
 "found" : true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

232

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Update operation: specify the ID and the partial document
#B Delete operation: no document is needed, just the ID
#C Update and delete operations increase the version, like regular updates and deletes

If the bulk APIs can be used to group multiple index, update and delete operations together,
you can do the same for search and get requests with the multisearch and multiget APIs
respectively. We'll look at these next.

10.1.2 Multi Search and Multi Get APIs
The benefit of using multisearch and multiget is the same as with bulks: when you have to do
multiple search or get requests, grouping them together saves time otherwise spent on
network latency.

MULTI SEARCH
One use-case for sending multiple search requests at once is when you're searching in
different types of documents. For example, let's assume you have a search box in your get-
together site. You don't know whether a search is for groups or for events, so you're going to
search for both and offer different “tabs” in the UI: one for groups, one for events. Those two
searches would have completely different scoring criteria, so you'd run them in different
requests, or you can group these requests together in a Multi Search.

The Multi Search API has many similarities with the bulk API:

• You hit the _msearch endpoint, and you may or may not specify an index and a type in
the URL

• Each request has two single-line JSON strings: the first may contain the index, type,
routing value or search type – the parameters you'd normally put in the URI of a single
request. The second line contains the query body, which is normally the payload of a
single request

Listing 10.4 shows an example Multi Search request for events and groups about
Elasticsearch:

Listing 10.4 Multi search request for events and groups about Elasticsearch
echo '{"index" : "get-together", "type": "group"} #A
{"query" : {"match" : {"name": "elasticsearch"}}} #B
{"index" : "get-together", "type": "event"} #C
{"query" : {"match" : {"title": "elasticsearch"}}} #C
' > request #D
curl localhost:9200/_msearch?pretty --data-binary @request #D
reply
{
 "responses" : [{ #E
 "took" : 4, #F
[...] #F
 "hits" : [{ #F
 "_index" : "get-together", #F
 "_type" : "group", #F
 "_id" : "2", #F

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

233

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "_score" : 1.8106999, #F
 "_source":{ #F
 "name": "Elasticsearch Denver", #F
[...] #F
 }, { #G
 "took" : 7, #G
[...] #G
 "hits" : [{ #G
 "_index" : "get-together", #G
 "_type" : "event", #G
 "_id" : "103", #G
 "_score" : 0.9581454, #G
 "_source":{ #G
 "host": "Lee", #G
 "title": "Introduction to Elasticsearch", #G
[…] #G

#A The header of each search contains data that can go to the URL of a single search
#B The body contains the query, like you have with single searches
#C For every other search, you have the a header and a body line
#D Like with bulk requests, it's important to preserve newline characters
#E The response is an array of individual search results
#F Reply for the first query, about events
#G All replies look like individual query replies

MULTI GET
Multi get makes sense when some processing external to Elasticsearch requires you to fetch a
set of documents without doing any search. For example, if you're storing system metrics, and
the ID is a timestamp, you might need to retrieve specific metrics from specific times without
doing any filtering.

To do that, you'd call the _mget endpoint and send a “docs” array with the index, type,
and ID of the documents you want to retrieve, like in listing 10.5.

Listing 10.5 _mget endpoint and “docs” array with index, type, and ID of documents
curl localhost:9200/_mget?pretty -d '{
 "docs" : [#A
 { #A
 "_index" : "get-together", #A
 "_type" : "group", #A
 "_id" : "1" #A
 },
 {
 "_index" : "get-together",
 "_type" : "group",
 "_id" : "2"
 }
]
}'
reply
{
 "docs" : [{ #B
 "_index" : "get-together", #C
 "_type" : "group", #C
 "_id" : "1", #C

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

234

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "_version" : 1, #C
 "found" : true, #C
 "_source":{ #C
 "name": "Denver Clojure", #C
[...] #C
 }, { #C
 "_index" : "get-together", #C
 "_type" : "group", #C
 "_id" : "2", #C
 "_version" : 1, #C
 "found" : true, #C
 "_source":{ #C
 "name": "Elasticsearch Denver", #C
[...] #C

#A The docs array identifies all documents that you want to retrieve
#B The reply also contains a docs array
#C Each element of the array is the document as you get it with single GET requests

As with most other APIs, the index and type are optional, because you can also put them in
the URL of the request. When the index and type are common for all IDs, it actually is
recommend to put them in the URL and put the IDs in and “ids” array, making the request
from listing 10.5 much shorter:

% curl localhost:9200/get-together/group/_mget?pretty -d '{
 "ids" : ["1", "2"]
}'

Grouping multiple operations in the same requests with the Multi Get API might introduce a
little complexity to your application, but it will make such requests faster without significant
costs. The same applies to the Multi Search and Bulk APIs, and to make the best use of them,
you can experiment with different request sizes and see which size works best for your
documents and your hardware.

Next, we'll look at how Elasticsearch processes documents in bulks internally, in the form
Lucene segments, and how you can tune these processes to speed up indexing and searching.

10.2 Optimizing the handling of Lucene segments
Once Elasticsearch receives documents from your application, it indexes them in memory in
inverted indices called segments. From time to time, these segments are written to disk.
Recall from chapter 3 that these segments can't be changed, only deleted, to make it easy for
the operating system to cache them. Also, bigger segments are periodically created from
smaller segments to consolidate the inverted indices and make searches faster.

There are lots of knobs to influence how Elasticsearch handles these segments at every
step, and configuring them to fit your use-case often gives important performance gains. In
this section, we'll discuss these knobs, and we'll divide them in three categories:

• How often to refresh and flush: Refreshing re-opens Elasticsearch's view on the
index, making newly indexed documents available for search. Flushing commits

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

235

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

indexed data from memory to the disk. Both refresh and flush operations are expensive
in terms of performance, so it's important to configure them right for your use-case.

• Merge policies: Lucene (and by inheritance, Elasticsearch) stores data into immutable
groups of files called segments. As you index more data, more segments are created.
Because a search in many segments is slow, small segments are merged in the
background into bigger segments to keep their number manageable. Merging is
performance-intensive, especially for the I/O subsystem. You can adjust the merge
policy to influence how often merges happen and how big segments can get.

• Store and store throttling: Elasticsearch limits the impact of merges on your
system's I/O to a certain number of bytes per second. Depending on your hardware
and use-case, you can change this limit. There are also other options around how
Elasticsearch uses the storage. For example, you can choose to store your indices only
in memory.

We'll start with the category that typically gives you the biggest performance gain of the
three: choosing how often to refresh and flush.

10.2.1 Refresh and flush thresholds
Recall from chapter 2 that Elasticsearch is often called “near real-time;” that is because
searches are often not run on the very latest indexed data (which would be real-time), but
very close.

This “near real-time” label fits, because normally Elasticsearch keeps a point-in-time view
of the index opened, so multiple searches would hit the same files and re-use the same
caches. During this time, newly indexed documents won't be visible to those searches, until
you do a refresh.

Refreshing, as the name suggests, refreshes this point-in-time view of the index, so your
searches can hit your newly indexed data. That's the upside. The downside is that each refresh
comes with a performance penalty: some caches will be invalidated, slowing searches down,
and the reopening process itself needs processing power, slowing down indexing.

WHEN TO REFRESH
The default behavior is to refresh every index automatically every second. You can change the
interval for every index, by changing its settings. Changing settings can be done at run-time.
For example, the following command will set the automatic refresh interval to 5 seconds:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.refresh_interval": "5s"
}'

TIP To confirm that your changes were applied, you can get all the index settings by running
curl localhost:9200/get-together/_settings?pretty

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

236

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

As you increase the value of “refresh_interval,” you'll have more indexing throughput,
because you'll spend fewer system resources on refreshing.

Alternatively, you can set 'refresh_interval' to '-1' and effectively disable automatic
refreshes, and rely on manual refresh. This works well for use-cases where indices only
change periodically in batches, such as a retail chain where products and stocks are updated
every night. Indexing throughput is important, because you want to consume those updates
quickly, but data freshness isn't, because you don't get the updates in real-time anyway. So
you can do nightly bulk index/update with automatic refresh disabled, and refresh manually
when you're done.

To refresh manually, you hit the _refresh endpoint of the index (or indices) you want to
refresh:

% curl localhost:9200/get-together/_refresh

WHEN TO FLUSH
If you're used to older versions of Lucene or Solr, you might be inclined to think that when a
refresh happens, all data that was indexed (in memory) since the last refresh is also
committed to disk.

With Elasticsearch (and Solr 4.0 or later) these process of refreshing and the process of
committing in-memory segments to disk are independent. Indeed, data is indexed first in
memory, but after a refresh, Elasticsearch will happily search the in-memory segments as
well. The process of committing in-memory segments to the actual Lucene index you have on
disk is called a flush, and it happens whether the segments are searcheable or not.

To make sure that in-memory data isn't lost when a node goes down or a shard is
relocated, Elasticsearch keeps track of the indexing operations that weren't flushed yet in a
transaction log. Besides committing in-memory segments to disk, a flush also clears the
transaction log, as shown below in Figure 10.2.

Figure 10.2 A flush moves segments from memory to disk and clears the transaction log

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

237

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

A flush is triggered in one of the following conditions, as shown in figure 10.3:

• the memory buffer is full
• a certain amount of time passed since the last flush
• the transaction log hit a certain size threshold

Figure 10.3 A flush is triggered when the memory buffer or transaction log is full, or at an interval

To control how often a flush happens, you have to adjust the settings that control those
three conditions.

The memory buffer size is defined in the elasticsearch.yml configuration file, through the
“indices.memory.index_buffer_size” setting. This controls the overall buffer for the entire
node and the value can be either a percent of the overall JVM heap like “10%,” or a fixed
value like “100mb.”

Transaction log settings are index-specific and control both the size at which a flush is
triggered (via index.translog.flush_threshold_size) and the time since the last flush (via
index.translog.flush_translog_period). As with most index settings, you can change
them at run-time:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.translog": {
 "flush_threshold_size": "500mb",
 "flush_threshold_period": "10m"
 }
}'

When a flush is performed, one or more segments are created on the disk. When you run a
query, Elasticsearch (through Lucene) looks in all segments and merges the results together in
an overall shard result. Then, as you saw in chapter 2, per-shard results are aggregated into
the overall results that go back to your application.

The key thing to remember here about segments is that the more segments you have to
search through, the slower the search. And, to keep the number of segments at bay,
Elasticsearch (again, through Lucene) merges multiple sets of smaller segments into bigger
segments in the background.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

238

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

10.2.2 Merges and merge policies
We first introduced segments in chapter 3, as immutable sets of files that Elasticsearch uses to
store indexed data. Because they don't change, segments are easily cached, making searches
fast. Also, changes to the data set, such as the addition of a document, won't require
rebuilding the index for data stored in existing segments. This makes indexing new documents
fast too, but it's not all good news. Updating a document can't change the actual document,
only index a new one. This requires deleting the old document too. Deleting, in turn, can't
remove a document from its segment, so it's only marked as deleted. Documents are only
actually removed during segment merging.

This brings us to the two purposes of merging segments: to keep the total number of
segments in check (and with it, query performance), and to remove deleted documents.

Segment merging happens in the background, according to the defined merge policy. The
default merge policy is “tiered” which, as illustrated in figure 10.4 below, divides segments in
tiers and, if you have more than the set maximum number of segments in a tier, a merge is
triggered in that tier.

#1 Flush operations add segments in the first tier, until they are too many. Let's say 4 are too many.
#2 Small segments are merged into bigger ones. Flushing continues to add new small segments.
#3 Eventually, there will be 4 segments on the 'bigger' tier.
#4 The 4 'bigger' segments get merged into an 'even bigger' segment and the process continues.
#5 ...until a tier hits a set limit. Only smaller ones get merged, 'max' segments stay the same.

Figure 10.4 Tiered merge policy performs a merge when it finds too many segments in a tier

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

239

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

There are other merge policies, but in this chapter we'll focus only on the tiered merge
policy, because it works best for most use-cases.

TUNING MERGE POLICY OPTIONS
The overall purpose of merging is to trade I/O and some CPU time for search performance.
Merging happens when you index, update or delete documents, so the more you merge, the
more expensive these operations get. Conversely, if you want faster indexing, you'd need to
merge less, and sacrifice some search performance.

In order to have more or less merging, you have a few configuration options. Here are the
most important ones:

• index.merge.policy.segments_per_tier: The higher the value, the more segments
you can have in a tier. This will translate to less merging and better indexing
performance. If you have little indexing and you want better search performance, lower
this value

• index.merge.policy.max_merge_at_once: This setting limits how many segments can
be merged at once. You'd typically have it equal to the segments_per_tier value. You
could lower the max_merge_at_once value to force less merging, but it's better to do
that by increasing segments_per_tier. Make sure max_merge_at_once isn't higher than
segments_per_tier, because this will cause too much merging

• index.merge.policy.max_merged_segment: This defines the maximum segment size –
bigger segments will not be merged with other segments. You'd lower this value if you
want less merging and faster indexing, because larger segments are more difficult to
merge.

• index.merge.scheduler.max_thread_count: Merging happens in background on
separate threads, and this setting controls the maximum number of threads that can
be used for merging. This is the hard limit of how many merges can happen at once.
You would increase this setting for an aggressive merge policy on a machine with many
CPUs and fast I/O, and you would decrease it if you have slow CPU or I/O.

All those options are index-specific and, as with transaction log and refresh settings, you
can change them at run-time. For example, the following snippet forces more merging by
reducing segments_per_tier to 5 (and with it, max_merge_at once), lowers the maximum
segment size to 1GB, and lowers the thread count to 1 to work better with slow disks:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.merge": {
 "policy": {
 "segments_per_tier": 5,
 "max_merge_at_once": 5,
 "max_merged_segment": "1gb"
 },
 "scheduler.max_thread_count": 1
 }
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

240

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

OPTIMIZING INDICES
As with refreshing and flushing, you can trigger a merge manually. A forced merge call is also
known as “optimize,” because you'd typically run it on an index that isn't going to be changed
later, to “optimize” it to a specified (low) number of segments for faster searching.

As with any aggressive merge, optimizing is I/O intensive and invalidates lots of your
operating system caches. If you continue to index, update, or delete documents from that
index, new segments will be created and the advantages of optimizing will no longer be there.
As a result, if you want fewer segments on an index that's constantly changing, you should
tune the merge policy.

Optimizing makes sense on a static index. For example, if you index social media data, and
you have one index per day, you know you'll never change yesterday's index until you remove
it for good. It might help to optimize it to a low number of segments, as shown in figure 10.5,
which will reduce its total size and speed up queries, once caches are warmed up again.

#1 Active (today's) index: gets updated, merges work according to merge policy
#2 Static indices: optimized to one segment for compact size and faster searches (once caches are warmed

up again)

Figure 10.5 Optimizing makes sense for indices that don't get updates

To optimize, you'd hit the _optimize endpoint of the index or indices you need to optimize.
The max_num_segments option indicates how many segments you should end up with, per
shard:

% curl localhost:9200/get-together/_optimize?max_num_segments=1

An optimize call can take a long time on a large index. You can send it to background by
setting wait_for_merge to “false”.

One possible reasons for an optimize (or any merge) being slow is the fact that
Elasticsearch, by default, limits the amount of I/O throughput merge operations can use. This
limiting is called store throttling, and we'll discuss it next, along with other options for storing
your data.

10.2.3 Store and store throttling
In early versions of Elasticsearch, heavy merging could slow the cluster down so much that
indexing and search requests would take unacceptably long, or nodes could become
unresponsive altogether. This was all due to the pressure of merging on the I/O throughput,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

241

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

which would make the writing of new segments slow. Also, CPU load was higher due to I/O
wait.

As a result, Elasticsearch now limits the amount of I/O throughput that merges can use
through store throttling. By default, there's a node-level setting called
indices.store.throttle.max_bytes_per_sec which defaults to 20mb, as of version 1.3.

This limit is good for stability in most use-cases, but won't work well for everyone. If you
have fast machines and lots of indexing, merges won't keep up, even if there is enough CPU
and I/O to perform them. In such situations, Elasticsearch makes internal indexing work only
on one thread, slowing it down to allow merges to keep up. In the end, if your machines are
fast, indexing might be limited by store throttling.

CHANGING STORE THROTTLING LIMITS
If you have fast disks and need more I/O throughput for merging, you can raise the store
throttling limit. You can also remove the limit altogether by setting
indices.store.throttle.type to none. On the other end of the spectrum, you can apply the
store throttling limit to all of Elasticsearch's disk operations, not just merging, by setting
indices.store.throttle.type to all.

Those settings can be changed from elasticsearch.yml on every node, but they can also be
changed at run-time through the Cluster Update Settings API. The following command would
raise the throttling limit to 500MB/s, but apply it to all operations. It will also make the change
persistent, to survive full cluster restarts (which is opposed to transient settings, that are lost
when the cluster is restarted):

% curl -XPUT localhost:9200/_cluster/settings -d '{
 "persistent": {
 "indices.store.throttle": {
 "type": "all",
 "max_bytes_per_sec": "500mb"
 }
 }
}'

TIP Like with index settings, you can also get cluster settings to see if they're applied. You'd do
that by running curl localhost:9200/_cluster/settings?pretty

CONFIGURING STORE
When we talked about flushes, merges and store throttling, we said “disk” and “I/O” because
that's the default: Elasticsearch will store indices in the data directory, which defaults to
/var/lib/elasticsearch/data if you installed Elasticsearch from a RPM/DEB package, or the
data/ directory from the unpacked tar.gz or zip archive if you installed it manually. You can
change the data directory from the path.data property of elasticsearch.yml.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

242

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Multiple data directories
If you have multiple disks, you can make Elasticsearch store data on all of them by adding multiple
paths to the path.data property. For example:
 path.data: /mnt/sdb1,/mnt/sdc1

This will divide the files making up your indices in all the provided locations. This is roughly
equivalent to having RAID0, because a search will typically hit files on all locations and use all the
available disk throughput.

By default, Elasticsearch places files on the disk with more available space, which works well if
your disks are equal. If you have a bigger disk, files will get written only there until it has the same
free space as the others. You can change the strategy by setting index.store.distributor to
random in the index settings when you create an index. This will write files on all disks, but disks will
more space get proportionally more files.

The default store implementation stores index files in the file system, and works well for most
use-cases. To access Lucene segment files, the default store implementation uses Lucene's
MMapDirectory for files that are typically large or need to be randomly accessed, such as term
dictionaries. For the other types of files, such as stored fields, Elasticsearch uses Lucene's
NIODirectory.

MMAPDIRECTORY
MMapDirectory takes advantage of file system caches by asking the operating system to map
the needed files in virtual memory, in order to access that memory directly. To Elasticsearch,
it looks as if the all the files are available in memory, but that doesn't have to be the case. If
your index size is larger than your available physical memory, the operating system will
happily take unused files out of the caches to make room for new ones that need to be read. If
Elasticsearch needs those un-cached files again, they are loaded in memory, while other
unused files are taken out and so on. The virtual memory used by MMapDirectory works
similarly to the system's virtual memory (swap), where the operating system uses the disk to
page out unused memory in order to be able to serve multiple applications

NIODIRECTORY
Memory mapped files also imply an overhead, because the application has to tell the operating
system to map a file, before accessing it. To reduce this overhead, Elasticsearch uses
NIODirectory for some types of files. NIODirectory access files directly, but it has to copy
the data it needs to read in a buffer in the JVM heap. This makes it good for small,
sequentially-accessed files, while MMapDirectory works well for large, randomly-accessed
files.

The default store implementation is best for most use-cases. You can, however, choose
other implementations by changing index.store.type in the index settings to other values
than default:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

243

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• mmapfs: This will use the MMapDirectory alone, and would work well, for example, if
you have a relatively static index that fits in your physical memory.

• niofs: This will use NIODirectory alone, and would work well on 32-bit systems, where
virtual memory address space is limited to 4GB, which will prevent you from using
mmapfs or default for larger indices.

• memory: This will store the index in memory, and it works well for small indices that
don't need persistence, like you would have in unit tests. It doesn't work well with big
indices, because the operating system would still waste memory trying to cache it (yes,
memory cache for memory index), and the internal buffers are small.

Store type settings need to be configured when you create the index. For example, the
following command creates an in-memory index called “unit-test”:

% curl -XPUT localhost:9200/unit-test -d '{
 "index.store.type": "memory"
}'

If you want to apply the same store type for all newly created indices, you can set
index.store.type to memory in elasticsearch.yml. In chapter 11, we'll also introduce index
templates, which allow you to define index settings that would apply to new indices matching
specific patterns. Templates can also be changed at run-time, and we recommend using them
instead of the more static elasticsearch.yml equivalent if you often create new indices.

Open files and virtual memory limits
Lucene segments that are stored on disk can spread onto many files, and when a search runs, the
operating system needs to be able to open many of them. Also, when you're using the default store
type or mmapfs, the operating system has to map some of those stored files into memory – even
though these files aren't in memory, to the application it's like they are, and the kernel takes care of
loading and unloading them in the cache.

On Linux, there are configurable limits that prevent the applications from opening too many files
at once, and for mapping too much memory. These limits are typically more conservative than
needed for Elasticsearch deployments, so it's recommended to increase them. If you're installing
Elasticsearch from a DEB or RPM package, you don't have to worry about this, because they are
increased by default. You can find these variables in /etc/default/elasticsearch or
/etc/sysconfig/elasticsearch:

MAX_OPEN_FILES=65535
MAX_MAP_COUNT=262144

To increase those limits manually, you have to run ulimit -n 65535 as the user that starts

Elasticsearch for the open files, and sysctl -w vm.max_map_count=262144 as root for the virtual
memory.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

244

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The default store type is typically the fastest because of the way the operating system caches
files. For caching to work well, you need to have enough free memory. Also, we mentioned
how merge and optimize operations invalidate caches. Managing caches for Elasticsearch to
perform well deserves more explanation, so we'll discuss them next.

10.3 Making the best use of caches
One of Elasticsearch's strong points - if not the biggest strong point - is the fact that you can
query billions of documents in milliseconds with commodity hardware. And one of the reasons
this is possible is its smart caching. You might have noticed that, after indexing lots of data,
the second query can be orders of magnitude faster than the first one. It's because of caching:
for example, when you combine filters and queries, the filter cache plays a very important role
in keeping your searches fast.

In this section, we'll discuss the filter cache, and two other types of caches: the shard
query cache, useful when you run aggregations on static indices because it caches the overall
result, and the operating system caches, which keep your I/O throughput high by caching
indices in memory.

Finally, we'll show you how to keep all those caches warm by running queries at each
refresh with index warmers. Let's start by looking at the main type of Elasticsearch-specific
cache - the filter cache – and how you can run your searches to make the best use of it.

10.3.1 Filters and filter caches
In chapter 4 you saw that lots of queries have a filter equivalent. Let's say that you want to
look for events on the get-together site that happened in the last month. To do that, you could
use the range query or the equivalent range filter.

In chapter 4 we said that of the two, we recommend using the filter, because it's
cacheable. In fact, the range filter is cached by default, but you can control whether a filter is
cached or not through the _cache flag. This flag applies to all filters; for example the following
snippet will filter events with "elasticsearch" in the verbatim tag, but won't cache the results:

% curl -XPUT localhost:9200/get-together/group/_search?pretty -d '{
 "query": {
 "filtered": {
 "filter": {
 "term": {
 "tags.verbatim": "elasticsearch",
 "_cache": false
 }
 }
 }
 }
}'

NOTE While all filters have the _cache flag, it doesn't apply in 100% of cases. For the range
filter, if you use "now" as one of the boundaries, the flag is ignored. For the has_child or
has_parent filters, the _cache flag doesn't apply at all.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

245

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

FILTER CACHE
The results of a filter that is cached are stored in the filter cache. This cache is allocated at the
node level, like the index buffer size you saw earlier. It defaults to 10%, but you can change it
from elasticsearch.yml according to your needs. If you use filters a lot and cache them, it
might make sense to increase the size, for example:

indices.cache.filter.size: 30%

How do you know if you need more (or less) filter cache? By monitoring your actual usage.
As we'll explore in chapter 11 on administration, Elasticsearch exposes lots of metrics,
including the amount of filter cache that's actually used, and the amount of cache evictions.
An eviction happens when the cache gets full, and Elasticsearch drops the least recently used
(LRU) entry in order to make room for the new one.

In some use-cases, filter cache entries have a short lifespan. For example, users typically
filter get-together events by a particular subject, refine their queries until they find what they
want, and then leave. If nobody else is searching for events on the same subject, that cache
entry will stick around doing nothing until it eventually gets evicted. A full cache with many
evictions would make performance suffer, because every search will consume CPU cycles to
squeeze new cache entries by evicting old ones.

In such use-cases, to prevent evictions from happening exactly when queries are run, it
makes sense to set a time to live (TTL) on cache entries. You can do that on a per-index basis
by adjusting index.cache.filter.expire. For example, the following snippet will expire filter
caches after 30 minutes:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.cache.filter.expire": "30m"
}'

Besides making sure you have enough room in your filter caches, you also need to run
your filters in a way that takes advantage of these caches.

COMBINING FILTERS
You often need to combine filters, such as when you're searching for events in a certain time
range, but also with a certain number of attendees. For best performance, you'd need to make
sure caches are well used when filters are combined, and that filters run in the right order.

To understand how to best combine filters, we need to revisit a concept discussed in
chapter 4: bitsets. A bitset is a compact array of bits, and it's used by Elasticsearch to cache
whether a document matches a filter or not. Most filters (such as the range and terms filter)
use bitsets for caching. Other filters, such as the script filter, don't use bitsets because
Elasticsearch has to iterate through all documents anyway. Table 10.1 shows which filters use
bitsets and which don't.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

246

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Table 10.1

Filter type Uses bitset

term yes
terms yes, but you can configure it differently, as we'll explain in a bit
exists/missing yes
prefix yes
regex no
nested/has_parent/has_child no
script no
geo filters (see appendix A) no

For filters that don't use bitsets, you can still set _cache to true in order to cache results of
that exact filter. Bitsets are different than simply caching the results because they are:

• Compact and easy to create: so the overhead of creating the cache when the filter is
first run is insignificant,

• Stored per individual filter: for example, if you use a term filter in two different queries,
or within two different bool filters, the bitset of that terms can be-reused.

• Easy to combine with other bitsets: If you have two queries that use bitsets, it's easy
for Elasticsearch to do a bitwise AND or OR in order to figure out which documents
match the combination.

To take advantage of bitsets, you need to combine filters that use them in a bool filter,
that will do that bitwise AND or OR, which is very easy for your CPU. For example, if you only
want to show groups where either Lee is a member or contain the tag “elasticsearch” could
look like this:

 "filter": {
 "bool": {
 "should": [
 {
 "term": {
 "tags.verbatim": "elasticsearch"
 }
 },
 {
 "term": {
 "members": "lee"
 }
 }
]
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

247

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The alternative of combining filters is by using the and, or and not filters. These filters
work differently because, unlike the bool filter, they don't use bitwise AND or OR. They just run
the first filter, pass the matching documents to the next one, and so on. As a result, and, or
and not filters are better when it comes to combining filters that don't use bitsets. For
example, if you want to show groups having at least 3 members, with events organized in July
2013, the filter might look like this:

 "filter": {
 "and": {
 "filters": [
 {
 "has_child": {
 "type": "event",
 "filter": {
 "range": {
 "date": {
 "from": "2013-07-01T00:00",
 "to": "2013-08-01T00:00"
 }
 }
 }
 }
 },
 {
 "script": {
 "script": "doc['members'].values.length > minMembers",
 "params": {
 "minMembers": 2
 },
 "lang": "groovy"
 }
 }
]
 }
 }

If you're using both bitset and non-bitset filters, you can combine the bitset ones in a bool
filter, and put that bool filter in an and/or/not filter, along with the non-bitset filters. For
example, in listing 10.6, we'll look for groups with at least two members, where either Lee is
one of them or the group is about Elasticsearch:

Listing 10.6 Combine bitset filters in a bool filter inside an and/or/not filter
curl localhost:9200/get-together/group/_search?pretty -d'{
 "query": { #A
 "filtered": { #A
 "filter": {
 "and": { #B
 "filters": [#B
 {
 "bool": { #C
 "should": [#C
 {
 "term": {
 "tags.verbatim": "elasticsearch"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

248

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
 },
 {
 "term": {
 "members": "lee"
 }
 }
]
 }
 },
 {
 "script": { #D
 "script": "doc[\"members\"].values.length > minMembers",
 "params": {
 "minMembers": 2
 },
 "lang": "groovy"
 }
 }
]
 }
 }
 }
 }
}'

#A Filtered query means if we add a query here, it will only run on documents matching the filter
#B The AND filter will run the bool filter first
#C Bool is fast when cached, because it makes use of the two bitsets of the term filters
#D The script filter will only work on documents matching the bool filter

Whether you combine filter with the bool, and, or or not filters, the order in which those
filters are executed is important. Cheaper filters, such as the term filter, should be placed
before expensive filters, such as the script filter. This would make the expensive filter run on
a smaller set of documents – those who already matched previous filters.

RUNNING FILTERS ON FIELD DATA
So far, we've discussed how bitsets and cached results make your filters faster. Some filters
use bitsets; some can cache the overall results. Some filters can also run off a different kind of
in-memory structure: field data. We first discussed field data in chapter 6 as an in-memory
structure that keeps a mapping of documents to terms. This mapping is the opposite of the
inverted index, which maps terms to documents. Field data is typically used when sorting and
during aggregations, but some filters can use it, too: the terms and the range filters.

A terms filter can have lots of terms, and a range filter with a wide range will (under the
hood) match lots of numbers (and numbers are also terms). Normal execution of those filters
will try to match every term separately and return the set of unique documents, as illustrated
in figure 10.6:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

249

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 10.6 Terms filter is by default checking which documents match each term, and intersects the
lists

As you can imagine, filtering on many terms can get expensive, because there would be
many lists to intersect. When the number of terms is large, it can be faster to take the actual
field values one by one and see if the terms match, instead of looking in the index, as
illustrated in figure 10.7:

Figure 10.7 Field data execution means iterating through documents, but no list intersections

These field values would be loaded in the field data cache, by setting “execution” to
“fielddata” in the terms or range filters. For example, the following range filter will get events
that happened in 2013, and will be executed on field data:

 "filter": {
 "range": {
 "date": {
 "from": "2013-01-01T00:00",
 "to": "2014-01-01T00:00"
 },
 "execution": "fielddata"
 }
 }

Using field data execution is especially useful when the field data is already used by a sort
operation or an aggregation. For example, running a terms aggregation on the tags field will
make a subsequent terms filter for a set of tags faster, because the field data is already
loaded.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

250

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Other execution modes for the terms filter: bool, and, or
The terms filter has other execution modes, too. If the default execution mode (called plain) builds
a bitset to cache the overall result, you can set it to bool in order to have a bitset for each term
instead. This is useful when you have different terms filters, that have lots of terms in common.

Also, there are and/or execution modes, which perform a similar process, except the individual
term filters are wrapped in an and/or filter instead of a bool filter.

Usually, the and/or approach is slower than bool, because they don't take advantage of bitsets.
and/or might be faster if the first term filters match only a few documents, which make subsequent
filter extremely fast.

To sum up, you have three options for running your filters:

• Caching them in the filter cache, which is great when filters are re-used.
• Not caching them, if they aren't re-used.
• For terms and range filters, run them on field data, which is good when you have many

terms, especially if the field data for that field is already loaded.

Next, we'll look at the shard query cache, which is good for when you re-use entire search
requests over static data.

10.3.2 Shard query cache
The filter cache is purpose-built to make parts of a search, namely filters that are configured
to be cached, run faster. It's also segment-specific: if some segments get removed by the
merge process, other segments' caches remain intact. By contrast, the shard query cache
maintains a mapping between the whole request and its results on the shard level, as
illustrated in figure 10.8.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

251

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 10.8 Shard query cache is more high-level than the filter cache

As of version 1.4, results cached at the shard level are limited to the total number of hits
(not the hits themselves!), aggregations and suggestions. That is why, in 1.4 at least, shard
query cache only works when your query has search_type set to count.

NOTE By setting search_type to count in the URI parameters, you tell Elasticsearch that you're
not interested in the query results, just in their number. We'll look at count and other search
types later in this section.

The shard query cache entries differ from one request to another, so they only apply to a
narrow set of requests. Also, when a refresh occurs and the shard's contents changed, all
shard query cache entries are invalidated – otherwise you could get outdated results from the
cache.

This “narrowness” of cache entries makes the shard query cache valuable only when
shards change rarely and you have many identical requests. For example, if you're indexing
logs and have time-based indices, you may often run aggregations on older indices that
typically remain unchanged until they are deleted. These older indices are an ideal candidate
for shard query cache.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

252

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

To enable the shard query cache by default on the index level, you can use the indices
update settings API:

% curl -XPUT localhost:9200/get-together/_settings -d '{
 "index.cache.query.enable": true
}'

TIP As with all index settings, you can enable the shard query cache at index creation, but it only
makes sense to do that if your new index gets queried a lot and updated rarely.

For every query, you can also enable or disable the shard query cache, overriding the
index-level setting, by adding the query_cache parameter. For example, to cache the frequent
top_tags aggregation on our get-together index, even if the default is disabled, you can run it
like this:

% URL="localhost:9200/get-together/group/_search"
% curl "$URL?search_type=count&query_cache&pretty" -d '{
 "aggs": {
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 }
 }
 }
}'

Like the filter cache, the shard query cache has a “size” configuration parameter. The limit
can be changed at the node level by adjusting indices.cache.query.size from
elasticsearch.yml, from the default of 1% of the JVM heap.

When sizing the JVM heap itself, you need to make sure you have enough room for both
the filter and the shard query caches. Also, you need to have enough free RAM besides the
JVM heap, to allow the operating system to cache indices stored on disk, otherwise you'll have
a lot of disk seeks.

Next, we'll look at how you can balance the JVM heap with the OS caches, and why that
matters.

10.3.3 JVM heap and OS caches
If Elasticsearch doesn't have enough heap to finish an operation, it throws an out of memory
exception, which effectively makes the node crash and fall out of the cluster. This puts extra
load on other nodes, as they replicate and relocate shards in order to get back to the
configured state. Because nodes are typically equal, this extra load is likely to make at least
another node run out of memory. Such a domino effect can bring down your entire cluster.

When JVM heap is tight, even if you don't see an out of memory error in the logs, the node
may become just as unresponsive. This can happen because the lack of memory pressures the
Garbage Collector to run longer and more often in order to free memory. As GC takes more

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

253

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

CPU time, there's less computing power on the node for serving requests or even answering
pings from the master, causing the node to fall out of the cluster.

NOTE If GC is taking too much time (or kicks in too late or too early), but you otherwise have
enough memory, have a look at appendix F for some tips on how to tune the GC and other JVM
settings for your use-case. But don't take GC tuning as some magical solution, because it doesn't
help if you simply don't have enough memory. The default JVM and GC settings are good for
most use-cases, so before investing time in GC tuning make sure there's enough JVM heap in the
first place. We'll discuss how you can monitor the JVM heap and other relevant metrics in chapter
11.

CAN YOU HAVE TOO LARGE OF A HEAP?
It might have been obvious that a heap that's too small is bad, but having a heap that's too
large isn't great either. A heap size of more that 32GB will automatically make pointers
uncompressed and waste memory. You'd typically have to go beyond 48GB to get the same
usable space as with 32GB because of this. If you really need more than 32GB of heap, you'd
probably be better off running two or more nodes on the same machine, each with less than
32GB of heap, and divide the data between them through sharding.

NOTE If you end up with multiple Elasticsearch nodes on the same physical machine, you need
to make sure that two replicas of the same shard aren't allocated on the same physical machine,
under different Elasticsearch nodes. Otherwise, if a physical machine goes down, you'd lose two
copies of that shard. To prevent this, you can use shard allocation, as described in chapter 9.

Below 32GB, too much heap still isn't ideal. The RAM on your servers that isn't occupied by
the JVM is typically used by the operating system to cache indices that are stored on the disk.
This is very important especially if you have magnetic or network storage, because fetching
data from the disk while running a query will delay its response. Even with fast SSDs, if you
have lots of queries, you'll get the best performance if the amount of data you need to store
on a node can fit in its OS caches.

So far we've shown that a heap that's too small is bad because of GC and out of memory
issues, and one that's too big is bad too, because it diminishes OS caches. What is a good
heap size then?

IDEAL HEAP SIZE; FOLLOW THE HALF RULE
Without knowing anything about the actual heap usage for your use-case, the rule of thumb is
to allocate half of the node's RAM to Elasticsearch, but no more than 32GB. This “half” rule
often gives a good balance between heap size and OS caches.

If you can monitor the actual heap usage (and we'll show you how to do that in chapter
11), a good heap size is just about large enough to accommodate the regular usage, plus any
spikes you might expect. Memory usage spikes could happen, for example, if someone decides
to run a terms aggregation with size 0 on an analyzed field with many unique terms. This will

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

254

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

force Elasticsearch to load all terms in memory in order to count them. If you don't know what
spikes to expect, the rule of thumb is again “half”: set a heap size 50% higher than your
“regular” usage.

For OS caches, you depend mostly on the RAM of your servers. That said, you can design
your indices in a way that works best with your operating system's caching. For example, if
you're indexing application logs, you can expect that most indexing and searching will involve
recent data. With time-based indices, the latest index is more likely to fit in the OS cache than
the whole dataset, making most operations faster. Searches on older data will often have to
hit the disk, but users are more likely to expect and tolerate slow response times on these
rare searches that span on longer periods of time. In general, if you can put “hot” data in the
same set of indices or shards, either by using time-based indices, user-based indices or
routing, you will make better use of OS caches.

All the caches we discussed so far – filter caches, shard query caches, OS caches – are
typically built when a query first runs. Loading up the caches makes that first query slower,
and the slowdown increases with the amount of data and the complexity of the query. If that
slowdown becomes a problem, you can warm up the caches in advance by using index
warmers, as you'll see next.

10.3.4 Keeping caches up with warmers
A warmer allows you to define any kind of search request: it can contain queries, filters, sort
criteria and aggregations. Once it's defined, the warmer will make Elasticsearch run the query
with every refresh operation. This will slow down the refresh, but the user queries will always
run on “warm” caches.

Warmers are useful when first-time queries are too slow, and it's preferable for the refresh
operation to take that hit, rather than the user. If our get-together site example would have
millions of events, and consistent search performance would be important, warmers would be
useful: slower refreshes shouldn't concern us too much, because we expect groups and events
to be searched for more often than they are modified.

To define a warmer on an existing index, you would do a PUT request to the index's URI,
with _warmer as the type, and the chosen warmer name as an ID, like you see in listing 10.7.
You can have as many warmers as you want, but keep in mind that the more warmers you
have, the slower your refreshes will be. Typically, you'd use a few popular queries as your
warmers. For example, in listing 10.7, we'd put two warmers: one for upcoming events and
one for popular group tags:

Listing 10.7 Two warmers: for upcoming events and popular group tags
curl -XPUT 'localhost:9200/get-together/event/_warmer/upcoming_events' -d '{
 "sort": [{
 "date": { "order": "desc" }
 }]
}'
{"acknowledged": true}
curl -XPUT 'localhost:9200/get-together/group/_warmer/top_tags' -d '{

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

255

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "aggs": {
 "top_tags": {
 "terms": {
 "field": "tags.verbatim"
 }
 }
 }
}'
{"acknowledged": true}

Later on, you can get the list of warmers for an index by doing a GET request on the _warmer
type:

curl localhost:9200/get-together/_warmer?pretty

You can also delete warmers by sending a DELETE request to the warmer's URI:

curl -XDELETE localhost:9200/get-together/_warmer/top_tags

If you're using multiple indices, it makes sense to register warmers at index creation. To
do that, you'd define them under the “warmers” key, in the same way as you do with
mappings and settings:

Listing 10.8 Register warmer at index creation time
curl -XPUT 'localhost:9200/hot_index' -d '{
"warmers": {
 "date_sorting": { #A
 "types": [], #B
 "source": { #C
 "sort": [{ #D
 "date": { #D
 "order": "desc" #D
 }
 }]
 }
 }
}}'

#A Name of this warmer. You can register multiple warmers, too
#B On which types should this warmer run. Empty means all types
#C Under this key we define the warmer itself
#D This warmer sorts by date, as the name suggests

TIP If new indices are created automatically, like you might have if you're using time-based
indices, you can define warmers in an index template that will be applied automatically to newly
created indices. We'll talk more about index templates in chapter 11, which is all about how to
administer your Elasticsearch cluster.

So far we talked about general solutions: how to keep caches warm and efficient make
your searches fast, how to group requests reduce network latency, and how to configure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

256

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

segment refreshing, flushing and storing in order to make your indexing and searching fast. All
this also should reduce the load on your cluster.

Next, we'll talk about narrower best practices, ones that apply to specific use-cases. For
example, how to make your scripts fast or how do deep paging efficiently.

10.4 Other performance trade-offs
In previous sections, you might have noticed that to make an operation fast, you need to pay
with something. For example, if you make indexing faster by refreshing less often, you pay
with searches that may not “see” recently indexed data. In this section, we'll continue looking
at such trade-offs, especially those occur in more specific use-cases, by answering questions
on the following topics:

• Inexact matches: Should you get faster searches by using ngrams and shingles at
index-time? Or is it better to use fuzzy and wildcard queries?

• Scripts: Should you trade some flexibility by calculating as much as possible at index
time? if not, how can I squeeze more performance out of them?

• Distributed search: Should you trade some network round-trips for more accurate
scoring?

• Deep paging: Is it worth trading memory to get page 100 faster?

By the time this chapter ends, we'll answer all these questions and lots of others that will
come up along the way. Let's start with inexact matches.

10.4.1 Big indices or expensive searches
Recall from chapter 4, that to get inexact matches, for example to tolerate typos, there are a
number of queries that can help:

• Fuzzy query: which matches terms at a certain edit distance from the original. For
example, omitting or adding an extra character would make a distance of 1

• Prefix query or filter: These match terms starting with the sequence you give
• Wildcards: which allow you to use ? And * to substitute one or many characters. For

example, “e*search” would match “elasticsearch.”

These queries offer lots of flexibility, but they are also more expensive than simple queries,
such as a term query. For an exact match, Elasticsearch has to only find that one term in the
term dictionary, while fuzzy, prefix and wildcard queries have to find all terms matching the
given pattern.

There is also another solution for tolerating typos and other inexact matches: ngrams.
Recall from chapter 5, that Ngrams generate tokens from each part of the word. So if you use
them at both index and query time, you'll get similar functionality to a fuzzy query, as you can
see in figure 10.9:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

257

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A More edits decrease the score
#B More terms match increase the score

Figure 10.9 Ngrams generate more terms than you need with fuzzy queries, but they match exactly

Which approach is best for performance? As with everything in this chapter, there's a trade-
off, and you need to choose where you want to pay the price:

• Fuzzy queries slow your searches down, but your index is the same as with exact
matches.

• Ngrams, on the other hand, increase the size of your index. Depending on ngram and
term sizes, the index size with ngrams can increase a few times. Also, if you want to
change ngram settings, you have to re-index all data, so there's less flexibility.
However, searches are typically faster overall with ngrams.

The ngram method is typically better when query latency is important, or when you have
lots of concurrent queries to support, so you need each one to take less CPU. Ngrams cause
indices to be bigger, so they need to still fit in OS caches or you need fast disks – otherwise
performance will degrade because your index is too big.

The fuzzy approach, on the other hand, is better when you need indexing throughput. Or
where index size is an issue or you have slow disks. Fuzzy queries also help if you need to
change them often, like by adjusting the edit distance, because you can make those changes
without re-indexing all data.

PREFIX QUERIES AND EDGE NGRAMS
For inexact matches, you often assume that the beginning is right. For example, a search for
“elastic” might be looking for “elasticsearch.” Like fuzzy queries, prefix queries are more
expensive than regular term queries, because there are more terms to look through.

The alternative could be to use edge ngrams, which were introduced in chapter 5. Figure
10.10 shows edge ngrams and prefix queries side by side:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

258

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure 10.10 Prefix query has to match more terms, but works with a smaller index than edge ngrams

As with the fuzzy queries and ngrams, the trade-off is between flexibility and index size, which
are better in the prefix approach, and query latency and CPU usage, which are better for edge
ngrams.

WILDCARDS
A wildcard query where you always put a wildcard in the beginning, such as elastic*, is
equivalent in terms of functionality to a prefix query. In this case, you have the same
alternative of using edge ngrams.

If the wildcard is in the middle, such as e*search, there's no real index-time equivalent.
You can still use ngrams to match the provided letters e and search, but if you have no control
over how wildcards are used, then the wildcard query is your only choice.

If the wildcard is always in the beginning, the wildcard query is typically more expensive
than with trailing wildcards, because there's no prefix anymore to hint in which part of the
term dictionary to look for matching terms. In this case, the alternative can be to use the
reverse token filter in combination with edge ngrams, as you saw in chapter 5. This alternative
is illustrated in figure 10.11:

Figure 10.11 You can use the reverse and edge ngram token filters to match suffixes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

259

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

PHRASE QUERIES AND SHINGLES
When you need to account for words that are next to each other, you can use the match query
with “type” set to “phrase” as you saw in chapter 4. Phrase queries are slower because they
have to account not only for the terms, but for their positions in the documents.

NOTE Positions are enabled by default for all analyzed fields, because “index_options” is set to
“positions”. If you don't use phrase queries, only term queries, you can disable indexing positions
by setting index_options to “freqs”. If you don't care about scoring at all – for example,
when you index application logs and you always sort results by timestamp – you can also skip
indexing frequencies by setting index_options to “docs”.

The index time alternative to phrase queries is to use shingles. As you saw in chapter 5,
shingles are like ngrams, but for terms instead of characters. A text that was tokenized into
“Introduction”, “to”, and “Elasticsearch” with a shingle size of 2 would produce the terms
“Introduction to” and “to Elasticsearch”.

The resulting functionality is similar to phrase queries, and the performance implications
are similar to the ngram situations we discussed earlier: shingles will increase the index size
and slow down indexing, in exchange for faster queries.

The two approaches are not exactly equivalent, in the same way wildcards and ngrams
aren't equivalent. With phrase queries, for example, you can specify a slop, which allows for
other words to appear in your phrase. For example, a slop of 2 would allow a sequence like
“buy the best phone” to match a query for “buy phone”. That works because, at search time,
Elasticsearch is aware of the position of each term, while shingles are effectively single terms.

The fact that shingles are single terms allow you to use them for matching compound
words better. For example, many people still refer to Elasticsearch as “elastic search”, which
can be a tricky match. With shingles, you can solve this by using an empty string as a
separator, instead of the default white space, as shown in figure 10.12 below.

Figure 10.12 Using shingles to match compound words

Using shingles, ngrams, fuzzy and wildcard queries show you that there's often more than
one way to search your documents, but that doesn't mean those ways are equivalent.
Choosing the best one in terms of performance and flexibility depends a lot on your use-case.
Next, we'll be looking deeper at scripts, where you'll find more of the same: multiple ways to
achieve the same result, but each method comes with its own advantages and disadvantages.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

260

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

10.4.2 Tuning scripts or not using them at all
We first introduced scripts in chapter 3, because they can be used for updates. You saw them
again in chapter 6, where you used them for sorting. In chapter 7, we used scripts again, this
time to build “virtual fields” at search time using “script fields.”

You get a lot of flexibility through scripting, but this flexibility has an important impact on
performance. Results of a script are never cached because Elasticsearch doesn't know what's
in the script. There can be something external, like a random number, that will make a
document match now and not match for the next run. There's no choice for Elasticsearch other
than running the same script for all documents involved.

When used, scripts are often the most time and CPU-consuming part of your searches. If
you want to speed up your queries, a good starting point is to try skipping scripts altogether.
If that's not possible, the general rule is to get as close to native code as you can to improve
their performance.

How can you get rid of scripts or optimize them? The answer depends heavily on the exact
use-case, but we'll try to cover the best practices here.

AVOIDING THE USE OF SCRIPTS
If you're using scripts to generate script fields, like we did in chapter 7, you can do this at
index time. In our case, instead of indexing documents directly, and counting the number of
group members in a script by looking at the array length, you can count the number of
members in your indexing pipeline and add it to a new field. In figure 10.13, we compare the
two approaches:

Figure 10.13 Counting members in a script or while indexing

Like with ngrams, this approach of doing the computation at index time works well if query
latency is a higher priority than indexing throughput.

Besides precomputing, the general rule for performance optimization for scripting is to re-
use as much of Elasticsearch's existing functionality as possible. Before using scripts, can you
fulfill the requirements with the function score query that we discussed in chapter 6? The
function score query offers lots of ways to manipulate the score. Let's say we want to run a

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

261

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

query for “elasticsearch” events, but we'll boost the score in the following ways, based on
these assumptions:

• Events happening soon are more relevant.

We'll make events' scores drop exponentially, the farther in the future they are, up to
60 days.

• Events with more attendees are more popular and more relevant.

We'll increase the score linearly the more attendees an event has

If we calculate the number of event attendees at index time (let's name the field
“attendees_count”, we can achieve both criteria without using any script:

 "function_score": {
 "functions": [
 {
 "linear": {
 "date": {
 "origin": "2013-07-25T18:00",
 "scale": "60d"
 }
 }
 },
 {
 "field_value_factor": {
 "field": "attendees_count"
 }
 }
]
 }

NATIVE SCRIPTS
If you want the best performance from a script, writing native scripts in Java is the best way
to go. Such a native script would be an Elasticsearch plugin, and you can look in appendix B
for a complete guide on how to write one.

The main disadvantages with native scripts is that they have to be stored on every node.
Changing a script implies updating it on all the nodes of your cluster and restarting them. This
won't be a problem if you don't have to change your queries often.

To run a native script in your query, you set lang to “native” and the name of the script
as the “script” content. For example, if you have a a plugin with a script called
numberOfAttendees that calculates the number of event attendees on the fly, you can use it in
a stats aggregation like this:

"aggregations": {
 "attendees_stats": {
 "stats": {
 "script": "numberOfAttendees",
 "lang": "native"
 }
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

262

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

LUCENE EXPRESSIONS
If you have to change scripts often, or just want to be prepared to change them without
restarting all your cluster, and your scripts are working with numerical fields, Lucene
Expressions are likely to be the best choice.

With Lucene Expressions, you provide a JavaScript expression in the script at query time,
and Elasticsearch compiles it in native code, making it as quick as a native script. The big
limitation is that you only have access to indexed numeric fields.

To use Lucene Expressions, you would set “lang” to “expression” in your script. For
example, you might have the number of attendees already, but you know that only half of
them usually show up, so you want to calculate some stats based on that number:

 "aggs": {
 "expected_attendees": {
 "stats": {
 "script": "doc['no_attendees'].value/2",
 "lang": "expression"
 }
 }
 }

If you have to work with non-numeric or non-indexed fields, and you want to be able to
easily change scripts, you can use Groovy – the default language for scripting since
Elasticsearch 1.4. Let's see how you can optimize Groovy scripts.

TERM STATISTICS
If you need to tune the score, you can access Lucene-level term statistics without having to
calculate it in the script itself. For example, if you only want to compute the score based on
the number of times that term appears in the document: unlike Elasticsearch's defaults, you
don't care about the length of the field in that document, nor the number of times that term
appears in other documents.

To do that, you can have a script score that only specifies the term frequency (number of
times the term appears in the document), as shown in listing 10.9:

Listing 10.9 Script score that only specifies term frequency
curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "function_score": {
 "filter": { #A
 "term": { #A
 "title": "elasticsearch" #A
 } #A
 },
 "functions": [
 {
 "script_score": { #B
 "script": "_index[\"title\"][\"elasticsearch\"].tf() +

_index[\"description\"][\"elasticsearch\"].tf()", #C
 "lang": "groovy"
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

263

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

 }
]
 }
 }
}'

#A First, we filter all documents with the term “elasticsearch” in the title field
#B Then, we compute relevancy by looking at the term's frequency in the title and description fields
#C Term frequency is accessed via the tf() function belonging to the term, which belongs to the field

ACCESSING FIELD DATA
If you need to work with the actual content of a document's fields in a script, one option is to
use the _source field. For example, you would get the “organizer” field by using
_source['organizer'].

In chapter 3, you saw how you can store individual fields, instead of alongside _source. If
an individual field is stored, you can access the stored content, too. For example, the same
“organizer” field can be retrieved with _fields['organizer'].

The problem with _source and _fields is that going to the disk in order to fetch the field
content of that particular field is very expensive. Fortunately, this slowness is exactly what
made field data necessary when Elasticsearch's built in sorting and aggregations need to
access field content. Field data, as we explained in chapter 6, is tuned for random access, so
it's best to use it in your scripts, too: it's often orders of magnitude faster than the _source or
_fields equivalent, even if field data isn't already loaded for that field when the script is first
run.

To access the “organizer” field via field data, you'd refer to doc['organizer']. For
example, in listing 10.10 we'll return groups where the organizer isn't a member, so we can
ask them why they don't participate to their own groups:

Listing 10.10 Return groups where organizer is not a member
SCRIPT="for (organizer in doc['organizer'].values) { \ #A
 found = false; \ #B
 for (member in doc['members'].values) { \ #B
 if (organizer == member) { found = true; break } \ #B
 }; \ #B
 if (! found) { return 1 } \ #B
}; \
return 0" #C
curl localhost:9200/get-together/group/_search?pretty -d "{
 \"query\": {
 \"filtered\": {
 \"filter\": {
 \"script\": { #D
 \"script\": \"$SCRIPT\", #D
 \"lang\": \"groovy\" #D
 }
 }
 }
 }
}"

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

264

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#A Define a script in a variable, so it doesn't have to be a one-liner. We'll run this script in a filter
#B Check each organizer against the list of members. If we can't find an organizer, the doc matches
#C If every organizer can be found, the doc doesn't match
#D Wrap the defined script in a script filter

There's one caveat for using doc['organizer'] instead of _source['organizer'] or the
_fields equivalent: you will access the terms, not the original field of the document. If an
organizer is 'Lee', you will get 'Lee' from _source and 'lee' from doc. There are trade-offs
everywhere, but we assume you got used to them at this point in the chapter.

 Next, we'll take a deeper look at how distributed searches work, and how you can use
search types to find a good balance between having accurate scores and low-latency searches.

10.4.3 Trading network trips for less data and better distributed scoring
Back in chapter 2, you saw how when you hit an Elasticsearch node with a search request,
that node distributes the request to all the shards that are involved, aggregates the individual
shard replies into one final reply to return to the application.

Let's take this a bit deeper. Let's say that you send a request with the default size of 10, to
an index with the default number of 5 shards. Does this mean that the node receiving the
search request – let's call it the “coordinating node” - will fetch 10 whole documents from each
shard, sort them and return only the top 10 from those 50 documents? If so, it sounds like a
waste to transfer 50 potentially big documents over the network, to return only 10. What if
there were 10 shards and 100 results? The overhead would explode.

How about returning only the IDs of those 50 documents, and the metadata needed for
sorting, to the coordinating node? After sorting, the coordinating node can fetch only the
required top 10 documents from the shards. This would reduce the network overhead for most
cases, but will involve two round trips.

With Elasticsearch, both options are available by setting the “search_type” parameter to
the search. The naïve implementation of fetching all involved documents is “query_and_fetch,”
while the 2-trip method is called “query_then_fetch” which is also the default. A comparison of
the two is shown in figure 10.14.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

265

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#1 search request
#2 forward search request to shard, asking for top 10 documents
#2* forward search request to shard, asking for sorting criteria of top 10 documents
#4 return result
#4* fetch relevant results only from the shards
#5 return result

Figure 10.14 Comparison between query_and_fetch and query_then_fetch

The default query_then_fetch (shown on the right of the figure) gets better as you hit
more shards, request more documents via the “size” parameter, and as documents get bigger,
because it will transfer much less data over the network. query_and_fetch (on the left of the
figure) becomes faster in the opposite scenario: small documents, small “size” and few shards.
For example, to set our get-together searches to query_and_fetch, a request may look like
this:

% URI='localhost:9200/get-together/_search'
% curl "$URI?search_type=query_and_fetch&pretty" -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 }
}'

NOTE The query_and_fetch search type is always used when the query only hits one shard,
because the per-shard result is the same as the total result. Hitting one shard happens when the
index has one primary shard or when you use custom routing.

DISTRIBUTED SCORING
By default, scores are calculated per shard, which can lead to inaccuracies. For example, if you
search for a term, one of the factors is the document frequency (DF), which shows how many

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

266

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

times the term you search for appears in all documents. Those “all documents” are by default
“all documents in this shard.” If the DF of a term is significantly different between shards,
scoring might not reflect reality. You can see this in figure 10.15, where doc 2 gets a higher
score than doc 1, even though doc 1 has more occurrences of “elasticsearch,” because there
are less documents with that term in its shard:

Figure 10.15 Uneven distribution of DF can lead to incorrect ranking

You can imagine that, with a high enough number of documents, DF values would naturally
balance across shards, and the default behavior would work just fine. However, if score
accuracy is a priority, or if DF is unbalanced for your use-case (for example, if you're using
custom routing), you need a different approach.

 That approach could be to change the search type from query_then_fetch to
dfs_query_then_fetch. Or from query_and_fetch to dfs_query_and_fetch. The DFS part
will tell the coordinating node to make an extra call to the shards in order to gather document
frequencies of the searched terms. The aggregated frequencies will be used to calculate the
score, as you can see in figure 10.16, making our doc 1 and doc 2 ranked correctly:

Figure 10.16 DFS search types use an extra network hop to compute global Dfs, that are used for scoring

You probably figured already that DFS queries are slower than their per-shard counterparts, so
make sure that you actually get better scores before switching. If you have a low-latency

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

267

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

network, this overhead can be negligible. If, on the other hand, your network isn't fast enough
or you have high query concurrency, you may see a significant overhead.

ONLY RETURNING COUNTS
But what if you don't care about scoring at all, and you don't need the document content,
either? For example, when you only need the document count or the aggregations. In such
cases, the recommended search type is “count.” Count only asks the involved shards for the
number of documents that match, and adds up those numbers.

10.4.4 Trading memory for better deep paging
In chapter 4, you learned that you'd use size and from to paginate the results of your query.
For example, to search for 'elasticsearch' in get-together events, and get the 5th page of
100 results, you'd run a request like this:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 },
 "from": 400,
 "size": 100
}'

This will effectively fetch the top 500 results, sort them, and return only the last 100. You
can imagine how inefficient this gets as you go deeper with pages. For example, if you change
the mapping and want to re-index all existing data into a new index, you might not have
enough memory to sort through all the results in order to return the last pages.

For this kind of scenarios you can use the “scan” search type, like you'll do in listing 10.11,
to go through all the get together groups. The initial reply only returns the scroll ID, which
uniquely identifies this request and will remember which pages where already returned. To
start fetching results, you send a request with that scroll ID. You repeat the same request to
fetch the next page until you either have enough data, or there are no more hits to return – in
which case the “hits” array is empty.

Listing 10.11 Use scan search type
curl "localhost:9200/get-together/event/_search?pretty&q=elasticsearch\
&search_type=scan\
&scroll=1m\ #A
&size=100" #B
reply
{
 "_scroll_id": "c2NhbjsxOzk2OjdZdkdQOTJLU1NpNGpxRWh4S0RWUVE7MTt0b3RhbF9oaXRzOjc7",

#C
[...]
 "hits": {
 "total": 7, #D
 "max_score": 0,
 "hits": [] #D

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

268

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

[...]
curl 'localhost:9200/_search/scroll?scroll=1m&pretty' -d

'c2NhbjsxOzk2OjdZdkdQOTJLU1NpNGpxRWh4S0RWUVE7MTt0b3RhbF9oaXRzOjc7' #E
reply
{
 "_scroll_id" : "c2NhbjswOzE7dG90YWxfaGl0czo3Ow==", #F
[...]
 "hits" : {
 "total" : 7,
 "max_score" : 0.0,
 "hits" : [{ #G
 "_index" : "get-together", #G
[...]
curl 'localhost:9200/_search/scroll?scroll=1m&pretty' -d

'c2NhbjswOzE7dG90YWxfaGl0czo3Ow==' #H

#A Elasticsearch will wait 1 minute for the next request (see below)
#B The size of each “page”
#C You get back a scroll ID that you'll use in the next request
#D You don't get any results yet, just their number
#E Fetch the first page with the scroll ID you got previously; specify a timeout for the next request
#F You get another scroll ID, to use for the next request
#G This time you get a page of results
#H Continue getting pages by using the last scroll ID, until the “hits” array is empty again

As with other searches, scan searches accept a “size” parameter to control the page size. But
this time, the page size is calculated per shard, so actual returned size would be “size” times
the number of shards. The timeout given in the “scroll” parameter of each request is renewed
each time you get a new page, that's why you can have a different timeout with every new
request.

NOTE It may be tempting to have big timeouts, so that you're sure a scroll doesn't expire while
you're processing it. The problem is, if a scroll is active and not used, it wastes resources: some
JVM heap to remember the current page, and disk space taken by Lucene segments which can't
be deleted by merges until the scroll is completed or expired.

The scan search type always returns results in the order it encounters them in the index,
regardless of the sort criteria. If you need both deep paging and sorting, you can add a “scroll”
parameter to a regular search request. Sending a GET request to the scroll ID will get the next
page of results. This time, “size” works accurately, regardless of the number of shards. You
also get the first page of results with the first request, just like you get with regular searches:

% curl 'localhost:9200/get-together/event/_search?pretty&scroll=1m' -d ' {
 "query": {
 "match": {
 "title": "elasticsearch"
 }
 }
}'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

269

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

From a performance perspective, adding “scroll” to a regular search is more expensive
than using the “scan” search type, because there's more information to keep in memory when
results are sorted. That said, deep paging is much more efficient than by default, because
Elasticsearch doesn't have to sort all previous pages to return the current page.

Scrolling is only useful when you know in advance that you want to do deep paging, it's
not recommended for when you only need a few pages of results. Like with everything in this
section and in the rest of this chapter, you pay a price for every performance improvement. In
the case of scrolling, that price is to keep information about the current search in memory
until the scroll expires or you have no more hits.

10.5 Summary
• Use the Bulk API to combine multiple index, update or delete operations in the same

request
• To combine multiple get or search requests, you can use the multi get or multi search

API respectively
• A flush operation commits in-memory Lucene segments to disk when the index buffer

size is full, the transaction log is too large, or too much time has passed since the last
flush

• A refresh makes new segments – flushed or not – available for searching. During heavy
indexing, t's best to lower the refresh rate or disable refresh altogether

• The merge policy can be tuned for more or less segments. Fewer segments make
searches faster, but merges take more CPU time. More segments make indexing faster
by spending less time on merging, but searches will be slower

• An optimize operation forces a merge, which works well for static indices that get lots
of searches

• Store throttling may limit indexing performance if merges fall behind. Increase or
remove the limits if you have fast I/O

• Combine filters that use bitsets in a bool filter and filters that don't in and/or/not filters
• Cache counts and aggregations in the shard query cache if you have static indices
• Monitor JVM heap and leave enough headroom so you don't experience heavy garbage

collection or out of memory errors, but leave some RAM for OS caches, too
• Use index warmers if the first query is too slow, and you don't mind slower indexing
• If you have room for bigger indices, using ngrams and shingles instead of fuzzy,

wildcard or phrase queries should make your searches faster
• You can often avoid using scripts by creating new fields with needed data in your

documents before indexing them
• Try to use Lucene expressions, term statistics and field data in your scripts whenever

they fit
• If your scripts don't need to change often, have a look at appendix B to learn how to

write a native script in an Elasticsearch plugin
• Use DFS search types if you don't have balance document frequencies between shards

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

270

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

• Use the count search type if you don't need any hits and the scan search type if you
need many

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

271

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Appendix A
Working with Geo-Spatial Data

Geo-spatial data is all about making your search application location-aware. For example, to
search for events that are close to you, or restaurants in a certain area, or to see which
parks's area intersects with the area of the city center, you’d work with geo-spatial data.

We'll call events and restaurants in this context points, as they are essentially a point on
the map. We'll put areas, such as a country, or a rectangle that you draw on a map, under
the generic umbrella of shapes. Geo-spatial search is all about points, shapes, and various
relations between them:

• Distance between a point and another point: If where you are is a point, and
swimming pools are other points, search for the closest swimming pools. Or filter only
pools that are reasonably close to you.

• A shape containing a point: If we select an area on the map – like the area where you
work – you can filter only restaurants that are in that area.

• A shape overlapping with another shape: For example, if you want to search for parks
in the city center.

This appendix will show you how to search and sort documents in Elasticsearch, based on
their distance from a reference point on the map. You'll also learn how to search for points
that fall into a rectangle, and how to search shapes that intersect with a certain area you
define on the map.

A.1 Points and distances between them
To search for points, you have to index them first. Elasticsearch has a Geo Point type
especially for that. You can see an example on how to use it in the code samples, by looking
at mapping.json

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

272

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

NOTE If you didn't use them already, the code samples for this book, along
with instructions on how to use them, can be found at

https://github.com/dakrone/elasticsearch-in-action

Each event has a location field, which is an object that includes the geolocation field
as a geo_point type:

"geolocation" : { "type" : "geo_point"}

With the geo point type defined in your mapping, you can index points by giving the
latitude and longitude as you can see in populate.sh:

"geolocation": "39.748477,-104.998852"

TIP You can also provide the latitude and longitude as properties, as an array or as a
geohash. This doesn't change the way points are indexed, it's just for your convenience, in
case you have a preferred way. More details can be found at
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-
type.html

Having geo points indexed as part of your event documents (from the data set used
throughout the book), enables you to add distance criteria to your searches in the following
ways:

• Sort results by the distance from a given point. This would make the event closest to
you appear first.

• Filter results by distance. This lets you display only events that are within 100
kilometers from you.

• Count results by distance. This allows you to create buckets of ranges. For example,
get the number of events within 100km from you, and the number of events from
100km to 200km and so on.

A.2 Add distance to your sort criteria
Using the get-together example we've used in the main chapters of the book, let's say your
coordinates are "40,-105" and you need to find the event about Elasticsearch closest to you.
To do that, you need to add a sort criteria called _geo_distance, where you specify your
current location, as shown in Listing A.1.

Listing A.1 Sorting events by distance

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": { #A
 "match": { #A
 "title": "elasticsearch" #A
 } #A
 }, #A

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

273

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
https://github.com/dakrone/elasticsearch-in-action
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-geo-point-type.html
https://github.com/dakrone/elasticsearch-in-action
http://www.manning-sandbox.com/forum.jspa?forumID=871

 "sort" : [
 {
 "_geo_distance" : { #B
 "location.geolocation" : "40,-105", #C
 "order" : "asc", #D
 "unit" : "km" #E
 }
 }
]
}'

#A The query, looking for “elasticsearch” in the title
#B The _geo_distance sort criteria containing:
#C Your current location
#D Ascending order will give closest events first
#E Each hit will have a “sort” value, representing the distance from your location in kilometers

SORTING BY DISTANCE AND OTHER CRITERIA AT THE SAME TIME BY USING SCRIPTS
A search like the one above is useful when distance is your only criteria. If you want to
include other criteria in the equation, like the document's score, you can use a script. That
script can generate a final score based on the initial score from your query, plus the distance
from your point of interest.

Listing A.2 shows such a query. We'll use the function_score query, which will first run
the same match query as listing A1, looking for events about Elasticsearch. Next, the script
will take the initial score, and divide it by the distance. This way, an event will score higher,
the close it is to you. To refer to the distance from a point, you'll use the arcDistanceInKm()
function, where you'll specify where you are. For example
doc['location.geolocation'].arcDistanceInKm(40.0, -105.0).

Listing A.2 Take distance into account when calculating the score

curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "function_score": {
 "query": { #A
 "match": { #A
 "title": "elasticsearch" #A
 } #A
 },
 "script_score": { #B
 "script": "if (doc['"'location.geolocation'"'].empty){ #C
 _score #C
 } else {
 _score*40000/doc['"'location.geolocation'"'].arcDistanceInKm(40.0, -105.0) #D
 }"
 }
 }
 }
}'

#A The query looking for “elasticsearch” will return a score
#B The script_score will calculate the final score based on the script you run
#C If there's no “geolocation” field, we leave the score untouched

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

274

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

#D Otherwise, we'll divide the score by the distance, to get higher scores for lower distances. And we'll
multiply everything by 40000, to bump the score of all events with geo information past the ones without

You might be tempted to think that such scripts bring the best of both worlds: relevance
from your query, and the geo-spatial dimension. While the function_score query is very
powerful indeed, there are two aspects to be aware of.

• Tuning the score: How important is distance compared to relevancy? What should you
do with documents that don't have geo information? These are questions that are
tricky to answer.

• Performance: Running a script like the one in listing A2 is expensive in terms of speed,
especially when you have lots of documents.

If these two aspects are bothering you, then you may want to search your events as
usual, and only filter those who are within a certain distance.

A.3 Filter based on distance
Let's say you're looking for events withing a certain range from where you are, like in Figure
A.1.

Figure . A.1 You can filter only points that fall in a certain range from a specified location

To filter such events, you would use the Geo Distance Filter. The parameters it needs are
your reference location and the limiting distance, as shown below:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

275

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_distance": {
 "distance": "50km",
 "location.geolocation": "40.0,-105.0"
 }
 }
 }
 }
}'

In this default mode, Elasticsearch will calculate the distance from 40.0,-105.0 to each
event's “geolocation”, and return only those who are under 50km. The way that the distance
is calculated can be set via the distance_type parameter, which will go right next to the
distance parameter. You have three options:

• sloppy_arc(default): It calculates the distance between the two points by doing a
faster approximation of an arc of a circle. For most situations, this is a good option.

• arc: It actually calculates the arc of a circle, making it slower but more precise than
sloppy_arc. Note that you don't get 100% precision here, either, because the Earth is
not perfectly round. Still, if you need precision, this is the best option.

• plane: This is the fastest but less precise implementation, because it assumes the
surface between the two points is plane. This option works well when you have many
documents and the distance limit is fairly small.

Performance optimization doesn't end up with distance algorithms. There's another
parameter to the Geo Distance Filter called optimize_bbox. “bbox” stands for “bounding
box”, which is a rectangle that you define on a map, which contains all the points and areas
of interest.

Using optimize_bbox will first check if events match a square that contains the circle
describing the distance range. Only if they match, Elasticsearch filters further by calculating
the distance.

If you ask yourself if the bounding box optimization is actually worth it, then you'll be
happy to know that:

• Yes: For most cases it is. Because verifying if a point belongs to a bounding box is
much faster than calculating the distance and comparing it to your limit

• It's configurable: You can set optimize_bbox to none and check if your query times
are faster or slower. The default value is memory and you can set it to indexed

Curious what the difference between memory and indexed is? We'll discuss it in the
beginning of the next section. If you're not curious, and you don't want to obsess on
performance improvements, sticking with the default should be good enough for most cases.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

276

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Distance range: filter and aggregations
There is also a Geo Distance Range Filter. It allows you, for example, to search for events between
50 and 100 kilometers from where you are. Besides its “from” and “to” distance options, it accepts
the same parameters as the Geo Distance Filter. More details about the Geo Distance Range filter
can be found here: http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-
dsl-geo-distance-range-filter.html

Users will probably search for events further from their point of reference because the ones they
found close weren't satisfying. For example, if the events' dates are too far. In such situations, it
might come handy for the user to see in advance how many events are, say, within 50km, how
many are between 50 and 100, how many between 100 and 200 and so on.

For this use-case, the Geo Distance Range Aggregation will come in handy. You'll specify a
reference point and the distance ranges you need, and it will return how many events it found for
each distance range. More information about the Geo Distance Range Aggregation can be found
here: http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-
bucket-geodistance-aggregation.html

When you index a point, one way to search for it is by calculating the distance to another
point, which is what we've discussed so far. The second way to search for it is in relation to a
shape, which we'll look at next.

A.4 Does a point belong to a shape?
Shapes, especially rectangles, are easy to draw interactively on a map, as you can see in
figure A.2. It's also faster to search for points in a shape than to calculate distances, because
searching in a shape only requires comparing the coordinates of the point with the
coordinates of the shape's corners.

Figure A.2 You can filter points based on whether they fall within a rectangle on the map

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

277

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-range-filter.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-range-filter.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geodistance-aggregation.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geodistance-aggregation.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

There are three types of shapes on the map that you can match points to. Or events, if
you're thinking of the get-together example we ran through the main chapters:

• Bounding boxes (rectangles): These are quite fast, and give you the flexibility to draw
any rectangle.

• Polygons: Allow you to draw a more precise shape, but it's difficult to ask a user to
draw a polygon and searching is slower the more complex the polygon is.

• Geohashes (squares defined by a hash): This is the least flexible, because hashes are
fixed. But, as you'll see later, it's typically the fastest implementation of the three.

A.4.1 Bounding Box Filter
To search if a point falls within a rectangle, you'd use the Bounding Box filter. This is useful if
your application allows users to click on a point on the map to define a corner of the
rectangle, and then to click again to define the opposite corner. The result could be a
rectangle like the one from figure A.2.

To run the Bounding Box filter, you'll specify the coordinates for the top-left and the
bottom-right points that describe the rectangle:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_bounding_box": {
 "location.geolocation": {
 "top_left": "40, -106",
 "bottom_right": "38, -103"
 }
 }
 }
 }
 }
}'

The default implementation of the Bounding Box Filter is to load the points' coordinates in
memory and compare them with those provided for the bounding box. This is the equivalent
of setting the type option under geo_bounding_box to memory.

Alternatively, you can set type to indexed, and Elasticsearch will do the same
comparison using Range Filters – like the ones you learned in chapter 4. For this
implementation to work, you'll need to index the point's latitude and longitude in their own
fields – which isn't enabled by default.

To enable indexing latitude and longitude separately, you'll have to set lat_lon to true
in your mapping, making your geolocation field definition look like this:

"geolocation" : { "type" : "geo_point", "lat_lon": true }

NOTE If you make the change above to mapping.json from the code samples, you'll need
to run populate.sh again to re-index the sample dataset and have your changes take effect.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

278

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

The indexed implementation is faster, but indexing latitude and longitude will make your
index bigger. Also, if you have more geo points per document – like an array of points for a
restaurant franchise – the indexed implementation won't work.

Polygon filter
If you want to search for points matching a more complex shape than a rectangle, you can use the
Geo Polygon filter. It allows you to enter the array of points that describe the polygon. More details
about the Geo Polygon filter can be found here:
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-polygon-
filter.html

A.4.2 Geohash Cell Filter
The last point-matches-shape method you can use is by matching geohash cells. They work
as suggested in figure A3: the Earth is divided into 32 rectangles/cells (divides the latitude in
4, and longitude in 8). Each cells is identified by an alpha-numeric character: its hash. Then,
each rectangle – for example, “d” – can be further divided into 32 rectangles of its own,
generating “d0”, “d1” and so on. The process can be repeated virtually forever, generating
smaller and smaller rectangles with longer and longer hash values.

Figure A3 World divided in 32 letter-coded cells. Each cell into 32 cells and so on, making longer hashes

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

279

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-polygon-filter.html
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-geo-polygon-filter.html
http://www.manning-sandbox.com/forum.jspa?forumID=871

Because of the way geohash cells are defined, each point on the map belongs to an infinite
number of such geohash cells, like “d”, “d0”, “d0b” and so on. Given such a cell,
Elasticsearch can tell you which points match with the Geohash Cell Filter:

% curl 'localhost:9200/get-together/event/_search?pretty' -d '{
 "query": {
 "filtered": {
 "filter": {
 "geohash_cell": {
 "location.geolocation": "9xj"
 }
 }
 }
 }
}'

HOW GEOHASH FILTERING WORKS
Even though a geohash cell is a rectangle, this filter works differently than the Bounding Box
filter. First, geo points have to get indexed with a geohash that describes them. For example
“9xj6”. Then, you also have to index all the ngrams of that hash, like “9”, “9x”, “9xj” and
“9xj6” - which described all the “parent” cells. When you run the filter, the hash from the
query is matched against the hashes indexed for that point, making a Geohash Cell filter
similar in implementation to the Term filter you saw in chapter 4, which is very fast.

To enable indexing the geohash in your geo point, you have to set geohash to true in
the mapping. To index that hashes' parents (ngrams), you have to set geohash_prefix to
true as well.

TIP Because a cell will never be able to perfectly describe a point, you have to choose how
precise (or big) that rectangle needs to be. The default setting for precision is 12 which
creates hashes like 9xj64sswpkdq with an accuracy of a few centimeters. Because you'll
also be indexing all the parents, you may want to trade some precision for index size and
search performance.

Understanding geohash cells is important even if you're not going to use the Geohash Cell
filter. Because in Elasticsearch, geohashes are the default way of representing shapes. We'll
explain how shapes use geohashes in the next section.

A.5 Shape intersections
Elasticsearch can index documents with shapes, like polygons like the area of a park, and
filter documents based on whether parks overlap other shapes, such as the city center. It
does this, by default, through the geohashes that we've discussed in the previous section.
The process is described in figure A.4: each shape is approximated (we'll discuss precision
later) to a group of rectangles defined by geohashes. When you search, Elasticsearch will
easily find out if at least one geohash of a shape overlaps a geohash of another shape.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

280

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

Figure A.4 Shapes represented in geohashes. Searching for shapes matching shape 1 will return shape 2

INDEXING SHAPES
Let's say we have a shape of a park that's a polygon made out of four corners. To index it,
you'd first have to define a mapping of that shape field – let's call it area – of type
geo_shape. With the mapping in place, you can start indexing documents: the area field of
each document would have to mention that the shape's type is polygon, and the array of
coordinates for that polygon, as shown in the next listing.

Listing A.3 Indexing a shape

curl -XPUT localhost:9200/geo #A
curl -XPUT localhost:9200/geo/park/_mapping -d '{ #B
 "properties": { #B
 "area": { "type": "geo_shape"} #B
 } #B
}' #B
curl -XPUT localhost:9200/geo/park/1 -d '{
 "area": { #C
 "type": "polygon", #C
 "coordinates": [#D
 [[45, 30], [46, 30], [45, 31], [46, 32]] #E
]
 }
}'

#A Creating a new index to index the park areas
#B Put the mapping for parks. geo-shapes will be indexed in the “area” field
#C A polygon is indexed in the “area” field
#D Coordinates for the polygon
#A This first array describes the outer boundary. Optionally, other arrays can be added to define “holes”
in the polygon

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

281

Licensed to zhailiang UNKNOWN <zhailiang@belink.com>

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

NOTE Polygons are not the only shape type supported by Elasticsearch. You can have
multiple polygons in a single shape (type: multipolygon). There's also the point and
multipoint type, one or more chained lines (linestring), and rectangles (envelope).

The amount of space a shape occupies in your index depends heavily on how you index
it. Because geohashes can only approximate most shapes, it's up to you to define how small
those geohash rectangles can be. The smaller they are, the better the
resolution/approximation, but your index size increases, because smaller geohash cells have
longer strings and – more importantly – more “parent ngrams” to index as well. Depending
on where you are in this trade-off, you'll specify a precision parameter in your mapping,
which defaults to 50m. This means the worse-case scenario is to get an error of 50m.

FILTERING OVERLAPPING SHAPES
With your “park” documents indexed, let's say you have another four-cornered shape that
represents your city center. To see which parks are (at least partly) in the city center, you'd
use the GeoShape filter. You can provide the shape definition of your city center in the filter,
like it is in the following listing.

Listing A.4 GeoShape filter example

curl localhost:9200/geo/park/_search?pretty -d '{
 "query": {
 "filtered": {
 "filter": {
 "geo_shape": {
 "area": { #A
 "shape": { #B
 "type": "polygon", #C
 "coordinates": [#C
 [[45, 30.5], [46, 30.5], [45, 31.5], [46, 32.5]] #C
] #C
 }
 }
 }
 }
 }
 }
}'

#A field to be searched on
#B you're going to provide a shape in the query
#C shape provided in the same way as when you index

If you followed listing A.3, you should see that the indexed shape matches. Change the
query to something like [[95, 30.5], [96, 30.5], [95, 31.5], [96, 32.5]], and the query won't
return any hits.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=871

282

http://www.manning-sandbox.com/forum.jspa?forumID=000
http://www.manning-sandbox.com/forum.jspa?forumID=871

	Elasticsearch in Action MEAP V11
	Copyright
	Welcome
	Table of Contents
	Chapter 1: Introducing Elasticsearch
	1.1 Elasticsearch as a search engine
	1.1.1 Providing quick searches
	1.1.2 Ensuring relevant results
	1.1.3 Searching beyond exact matches

	1.2 Typical setups using Elasticsearch
	1.2.1 One-stop shop for storing, searching, and statistics
	1.2.2 Plugin search in a complex system
	1.2.3 Use it with existing tools

	1.3 Data structure and interaction
	1.3.1 Understanding indexing and search functionality
	1.3.2 Analysis
	1.3.3 Structuring your data in Elasticsearch

	1.4 Performance and scaling
	1.5 Getting started with Elasticsearch
	1.5.1 Installing Java
	1.5.2 Downloading and starting Elasticsearch
	1.5.3 Verifying that it works

	1.6 Summary

	Chapter 2:
Diving into the functionality
	2.1 Understanding the logical layout: documents, types, and indices
	2.1.1 Documents
	2.1.2 Mapping types
	2.1.3 Indices

	2.2 Understanding the physical layout: nodes and shards
	2.2.1 Creating a cluster of one or more nodes
	2.2.2 Understanding primary and replica shards
	2.2.3 Distributing shards in a cluster
	2.2.4 Distributed indexing and searching

	2.3 Indexing new data
	2.3.1 Indexing a document with cURL
	2.3.2 Creating an index and mapping type
	2.3.3 Indexing documents from the code samples

	2.4 Searching for and retrieving data
	2.4.1 Where to search
	2.4.2 Contents of the reply
	2.4.3 How to search
	2.4.4 Getting documents by ID

	2.5 Configuring Elasticsearch
	2.5.1 Specifying a cluster name in elasticsearch.yml
	2.5.2 Specifying verbose logging via logging.yml
	2.5.3 Adjusting JVM settings

	2.6 Adding nodes to the cluster
	2.6.1 Starting a second node
	2.6.2 Adding additional nodes

	2.7 Summary

	Chapter 3:
Indexing, updating, and deleting data
	3.1 Using mappings to define kinds of documents
	3.1.1 Retrieving and defining mappings
	3.1.2 Extending an existing mapping

	3.2 Core types for defining your own fields in documents
	3.2.1 String
	3.2.2 Numeric
	3.2.3 Date
	3.2.4 Boolean

	3.3 Arrays and multi fields
	3.3.1 Arrays
	3.3.2 Multi-fields

	3.4 Using predefined fields
	3.4.1 Control how to store and search your documents
	3.4.2 Identify your documents
	3.4.3 Adding new properties to your documents

	3.5 Updating existing documents
	3.5.1 Using the update API
	3.5.2 Implementing concurrency control through versioning

	3.6 Deleting data
	3.6.1 Deleting documents
	3.6.2 Deleting indices
	3.6.3 Closing indices
	3.6.4 Reindexing sample documents

	3.7 Summary

	Chapter 4:
Searching your data
	4.1 Structure of a query
	4.1.1 Specifying a search scope
	4.1.2 Specifying the body of the query
	4.1.3 Understanding the structure of a response

	4.2 Working with filters
	4.2.1 Filter caching

	4.3 Working with match and filter queries
	4.3.1 Match_all query
	4.3.2 Query_string query
	4.3.3 Term query
	4.3.4 Terms query
	4.3.5 Combining queries
	4.3.6 Match and multi_match queries

	4.4 Beyond match and filter queries
	4.4.1 Range query and filter
	4.4.2 Prefix query and filter
	4.4.3 Wildcard query
	4.4.4 Querying for field existence with filters
	4.4.5 Transforming any query into a filter

	4.5 Choosing the best query for the job
	4.6 Summary

	Chapter 5:
Analyzing your data
	5.1 What is analysis?
	5.2 Using analyzers for your documents
	5.2.1 Adding analyzers when an index is created
	5.2.2 Adding analyzers to the Elasticsearch configuration
	5.2.3 Specifying the analyzer for a field in the mapping

	5.3 Analyzing text with the analyze API
	5.4 Analyzers, Tokenizers and Token Filters, oh my!
	5.4.1 Built-in analyzers
	5.4.2 Tokenization
	5.4.3 Token Filters

	5.5 Ngrams, Edge Ngrams, and Shingles
	5.6 Stemming
	5.6.1 Algorithmic stemming
	5.6.2 Stemming with dictionaries
	5.6.3 Overriding the stemming from a token filter

	5.7 Summary

	Chapter 7: Exploring your data with Aggregations
	7.1 Anatomy of an aggregation
	7.1.1 Structure of an aggregation request
	7.1.2 Aggregations run on query results
	7.1.3 Filters and aggregations

	7.2 Metrics aggregations
	7.2.1 Statistics
	7.2.2 Advanced statistics
	7.2.3 Approximate statistics

	7.3 Multi-bucket aggregations
	7.3.1 Terms aggregations
	7.3.2 Range aggregations
	7.3.3 Histogram aggregations

	7.4 Nesting aggregations
	7.4.1 Nesting multi-bucket aggregations
	7.4.2 Nesting aggregations to get result grouping
	7.4.3 Using single-bucket aggregations

	7.5 Summary

	Chapter 8:
Relations among documents
	8.1 Options for defining relationships among documents
	8.1.1 Object type
	8.1.2 Nested type
	8.1.3 Parent-child relationships
	8.1.4 Denormalizing

	Object type: using sub documents as field values
	8.2.1 Mapping and indexing objects
	8.2.2 Searching in objects

	8.3 Nested type: connecting nested documents
	8.3.1 Mapping and indexing nested documents
	8.3.2 Searches and aggregations on nested documents

	8.4 Parent-child relationships: connecting separate documents
	8.4.1 Indexing, updating and deleting child documents
	8.4.2 Searching in parent and child documents

	8.5 Denormalizing: using redundant data connections
	8.5.1 Use-cases for denormalizing
	8.5.2 Indexing, updating, and deleting denormalized data
	8.5.3 Querying denormalized data

	8.6 Summary

	Chapter 10:
Improving performance
	10.1 Grouping requests
	10.1.1 Bulk indexing, updating and deleting
	10.1.2 Multi Search and Multi Get APIs

	10.2 Optimizing the handling of Lucene segments
	10.2.1 Refresh and flush thresholds
	10.2.2 Merges and merge policies
	10.2.3 Store and store throttling

	10.3 Making the best use of caches
	10.3.1 Filters and filter caches
	10.3.2 Shard query cache
	10.3.3 JVM heap and OS caches
	10.3.4 Keeping caches up with warmers

	10.4 Other performance trade-offs
	10.4.1 Big indices or expensive searches
	10.4.2 Tuning scripts or not using them at all
	10.4.3 Trading network trips for less data and better distributed scoring
	10.4.4 Trading memory for better deep paging

	10.5 Summary

	Appendix A:
Working with Geo-Spatial Data
	A.1 Points and distances between them
	A.2 Add distance to your sort criteria
	A.3 Filter based on distance
	A.4 Does a point belong to a shape?
	A.4.1 Bounding Box Filter
	A.4.2 Geohash Cell Filter

	A.5 Shape intersections

