

 Build Your API
with Spring

1: Bootstrap a Web Application with Spring 5

1. Overview 2

2. Bootstrapping Using Spring Boot 3

2.1. Maven Dependency 3

2.2. Creating a Spring Boot Application 3

3. Bootstrapping Using spring-webmvc 5

3.1. Maven Dependencies 5

3.2. The Java-based Web Configuration 5

3.3. The Initializer Class 6

4. XML Configuration 7

5. Conclusion 8

2: Build a REST API with Spring and Java Config

1. Overview 10

2. Understanding REST in Spring 11

3. The Java Configuration 12

3.1. Using Spring Boot 12

Table of Contents

Table of Contents

4. Testing the Spring Context 13

4.1. Using Spring Boot 14

5. The Controller 16

6. Mapping the HTTP Response Code 18

6.1. Unmapped Requests 18

6.2. Valid Mapped Requests 18

6.3. Client Error 18

6.4. Using @ExceptionHandler 19

7. Additional Maven Dependencies 20

7.1. Using Spring Boot 20

8. Conclusion 22

3: Http Message Converters with the Spring
Framework

1. Overview 24

2. The Basics 25

2.1. Enable Web MVC 25

2.2. The Default Message Converters 25

Table of Contents

3. Client-Server Communication – JSON only 26

3.1. High-Level Content Negotiation 26

3.2. @ResponseBody 27

3.3. @RequestBody 28

4. Custom Converters Configuration 29

4.1. Spring Boot Support 31

5. Using Spring’s RestTemplate with Http Message Converters 32

5.1. Retrieving the Resource with no Accept Header 32

5.2. Retrieving a Resource with application/xml Accept Header 32

5.3. Retrieving a Resource with application/json Accept Header 34

5.4. Update a Resource with XML Content-Type 35

6. Conclusion 36

4: Spring’s RequestBody and ResponseBody

 Annotations

1. Introduction 38

2. @RequestBody 39

Table of Contents

3. @ResponseBody 40

4. Conclusion 41

5: Entity To DTO Conversion for a Spring

REST API

1. Overview 43

2. Model Mapper 44

3. The DTO 45

4. The Service Layer 46

5. The Controller Layer 47

6. Unit Testing 49

7. Conclusion 50

6: Error Handling for REST with Spring

1. Overview 52

2. Solution 1 – The Controller level @ExceptionHandler 53

Table of Contents

3. Solution 2 – The HandlerExceptionResolver 54

3.1. ExceptionHandlerExceptionResolver 54

3.2. DefaultHandlerExceptionResolver 54

3.3. ResponseStatusExceptionResolver 55

3.4. SimpleMappingExceptionResolver and AnnotationMethodHandlerException-

Resolver 55

3.5. Custom HandlerExceptionResolver 56

4. Solution 3 – @ControllerAdvice 58

5. Solution 4 – ResponseStatusException (Spring 5 & Above) 59

6. Handle Access Denied in Spring Security 61

6.1. MVC – Custom Error Page 61

6.2. Custom AccessDeniedHandler 62

6.3. REST and Method Level Security 63

7. Spring Boot Support 64

8. Conclusion 66

7: REST API Discoverability and HATEOAS

1. Overview 68

2. Why Make the API Discoverable 69

Table of Contents

3. Discoverability Scenarios (Driven by Tests) 70

3.1. Discover the Valid HTTP Methods 70

3.2. Discover the URI of Newly Created Resource 71

3.3. Discover the URI to GET All Resources of That Type 72

4. Other Potential Discoverable URIs and Microformats 73

5. Conclusion 74

8: An Intro to Spring HATEOAS

1. Overview 76

2. Spring-HATEOAS 77

3. Preparation 78

4. Adding HATEOAS Support 80

4.1. Adding Hypermedia Support to a Resource 80

4.2. Creating Links 80

4.3. Creating Better Links 81

5. Relations 82

6. Links to Controller Methods 84

Table of Contents

7. Spring HATEOAS in Action 85

8. Conclusion 88

9: REST Pagination in Spring

1. Overview 90

2. Page as Resource vs Page as Representation 91

3. The Controller 92

4. Discoverability for REST Pagination 93

5. Test Driving Pagination 95

6. Test Driving Pagination Discoverability 96

7. Getting All Resources 97

8. REST Paging with Range HTTP Headers 98

9. Spring Data REST Pagination 99

10. Conclusion 101

Table of Contents

10: Test a REST API with Java

1. Overview 103

2. Testing the Status Code 104

3. Testing the Media Type 105

4. Testing the JSON Payload 106

5. Utilities for Testing 107

6. Dependencies 108

7. Conclusion 109

1

1: Bootstrap a Web Application with Spring 5

2

1. Overview

The chapter illustrates how to Bootstrap a Web Application with Spring.

We’ll look into the Spring Boot solution for bootstrapping the application
and also see a non-Spring Boot approach.

We’ll primarily use Java configuration, but also have a look at their equivalent
XML configuration.

3

2. Bootstrapping Using Spring Boot

2.1. Maven Dependency

First, we’ll need the spring-boot-starter-web dependency:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <version>2.1.1.RELEASE</version>

</dependency>

1.

2.

3.

4.

5.

This starter includes:

• spring-web and the spring-webmvc module that we need for our Spring
web application

• a Tomcat starter so that we can run our web application directly without
explicitly installing any server

2.2. Creating a Spring Boot Application

The most straight-forward way to get started using Spring Boot is to
create a main class and annotate it with @SpringBootApplication:

@SpringBootApplication

public class SpringBootRestApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootRestApplication.class, args);

 }

}

1.

2.

3.

4.

5.

6.

7.

4

This single annotation is equivalent to using @Configuration,
@EnableAutoConfiguration, and @ComponentScan.

By default, it will scan all the components in the same package or below.

Next, for Java-based configuration of Spring beans, we need to create a
config class and annotate it with @Configuration annotation:

This annotation is the main artifact used by the Java-based Spring
configuration; it is itself meta-annotated with @Component, which makes
the annotated classes standard beans and as such, also candidates for
component-scanning.

The main purpose of @Configuration classes is to be sources of bean
definitions for the Spring IoC Container. For a more detailed description,
see the official docs.

Let’s also have a look at a solution using the core spring-webmvc library.

@Configuration

public class WebConfig {

}

1.

2.

3.

4.

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

5

3. Bootstrapping Using spring-webmvc

3.1. Maven Dependencies

First, we need the spring-webmvc dependency:

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>5.0.0.RELEASE</version>

</dependency>

1.

2.

3.

4.

5.

3.2. The Java-based Web Configuration

Next, we’ll add the configuration class that has the @Configuration
annotation:

@Configuration

@EnableWebMvc

@ComponentScan(basePackages = “com.baeldung.controller”)

public class WebConfig {

}

1.

2.

3.

4.

5.

6.

Here, unlike the Spring Boot solution, we’ll have to explicitly define
@EnableWebMvc for setting up default Spring MVC Configurations and
@ComponentScan to specify packages to scan for components.

The @EnableWebMvc annotation provides the Spring Web MVC
configuration such as setting up the dispatcher servlet, enabling the @
Controller and the @RequestMapping annotations and setting up other
defaults.

@ComponentScan configures the component scanning directive, specifying
the packages to scan.

6

3.3. The Initializer Class

Next, we need to add a class that implements the
WebApplicationInitializer interface:

public class AppInitializer implements WebApplicationInitializer {

 @Override

 public void onStartup(ServletContext container) throws ServletException {

 AnnotationConfigWebApplicationContext context = new

AnnotationConfigWebApplicationContext();

 context.scan(“com.baeldung”);

 container.addListener(new ContextLoaderListener(context));

 ServletRegistration.Dynamic dispatcher =

 container.addServlet(“mvc”, new DispatcherServlet(context));

 dispatcher.setLoadOnStartup(1);

 dispatcher.addMapping(“/”);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Here, we’re creating a Spring context using the
AnnotationConfigWebApplicationContext class, which means we’re
using only annotation-based configuration. Then, we’re specifying the
packages to scan for components and configuration classes.

Finally, we’re defining the entry point for the web application – the
DispatcherServlet.

This class can entirely replace the web.xml file from <3.0 Servlet versions.

7

4. XML Configuration

Let’s also have a quick look at the equivalent XML web configuration:

<context:component-scan base-package=”com.baeldung.controller” />

<mvc:annotation-driven />

1.

2.

We can replace this XML file with the WebConfig class above.

To start the application, we can use an Initializer class that loads the XML
configuration or a web.xml file.

8

5. Conclusion

In this chapter, we looked into two popular solutions for bootstrapping a
Spring web application, one using the Spring Boot web starter and other
using the core spring-webmvc library.

As always, the code presented in this chapter is available over on Github.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

9

2: Build a REST API with Spring and Java Config

10

1. Overview

This chapter shows how to set up REST in Spring – the Controller and
HTTP response codes, configuration of payload marshalling and content
negotiation.

11

2. Understanding REST in Spring

The Spring framework supports two ways of creating RESTful services:

• using MVC with ModelAndView

• using HTTP message converters

The ModelAndView approach is older and much better documented, but
also more verbose and configuration heavy. It tries to shoehorn the REST
paradigm into the old model, which is not without problems. The Spring
team understood this and provided first-class REST support starting with
Spring 3.0.

The new approach, based on HttpMessageConverter and annotations, is
much more lightweight and easy to implement. Configuration is minimal,
and it provides sensible defaults for what one would expect from a RESTful
service.

12

3. The Java Configuration

@Configuration

@EnableWebMvc

public class WebConfig{

 //

}

1.

2.

3.

4.

5.

The new @EnableWebMvc annotation does some useful things – specifically,
in the case of REST, it detects the existence of Jackson and JAXB 2 on the
classpath and automatically creates and registers default JSON and XML
converters. The functionality of the annotation is equivalent to the XML
version:

This is a shortcut, and though it may be useful in many situations, it’s
not perfect. When more complex configuration is needed, remove the
annotation and extend WebMvcConfigurationSupport directly.

3.1. Using Spring Boot

If we’re using the @SpringBootApplication annotation and the spring-
webmvc library is on the classpath, then the @EnableWebMvc annotation
is added automatically with a default autoconfiguration.

We can still add MVC functionality to this configuration by implementing
the WebMvcConfigurer interface on a @Configuration annotated class. We
can also use a WebMvcRegistrationsAdapter instance to provide our own
RequestMappingHandlerMapping, RequestMappingHandlerAdapter, or
ExceptionHandlerExceptionResolver implementations.

<mvc:annotation-driven/>1.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-spring-mvc-auto-configuration

13

4. Testing the Spring Context

Starting with Spring 3.1, we get first-class testing support for @Configuration
classes:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(

 classes = {WebConfig.class, PersistenceConfig.class},

 loader = AnnotationConfigContextLoader.class)

 public class SpringTest {

 @Test

 public void whenSpringContextIsInstantiated_thenNoExceptions(){

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

We’re specifying the Java configuration classes with the
@ContextConfiguration annotation. The new AnnotationConfigContextLoader
loads the bean definitions from the @Configuration classes.

Notice that the WebConfig configuration class was not included in the test
because it needs to run in a servlet context, which is not provided.

14

Spring Boot provides several annotations to set up the Spring
ApplicationContext for our tests in a more intuitive way.

We can load only a particular slice of the application configuration, or we
can simulate the whole context startup process.

For instance, we can use the @SpringBootTest annotation if we want the
entire context to be created without starting the server.

With that in place, we can then add the @AutoConfigureMockMvc to inject
a MockMvc instance and send HTTP requests:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

@RunWith(SpringRunner.class)

@SpringBootTest

@AutoConfigureMockMvc

public class FooControllerAppIntegrationTest {

 @Autowired

 private MockMvc mockMvc;

 @Test

 public void whenTestApp_thenEmptyResponse() throws Exception {

 this.mockMvc.perform(get(“/foos”)

 .andExpect(status().isOk())

 .andExpect(...);

 }

}

To avoid creating the whole context and test only our MVC Controllers, we
can use @WebMvcTest:

4.1. Using Spring Boot

15

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

@RunWith(SpringRunner.class)

@WebMvcTest(FooController.class)

public class FooControllerWebLayerIntegrationTest {

 @Autowired

 private MockMvc mockMvc;

 @MockBean

 private IFooService service;

 @Test()

 public void whenTestMvcController_thenRetrieveExpectedResult() throws Exception {

 // ...

 this.mockMvc.perform(get(“/foos”)

 .andExpect(...);

 }

}

We can find detailed information on this subject on Testing in Spring Boot.

https://www.baeldung.com/spring-boot-testing

16

The @RestController is the central artifact in the entire web tier of the
RESTful API. For the purpose of this post, the controller is modeling a
simple REST resource – Foo:

5. The Controller

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

@RestController

@RequestMapping(“/foos”)

class FooController {

 @Autowired

 private IFooService service;

 @GetMapping

 public List<Foo> findAll() {

 return service.findAll();

 }

 @GetMapping(value = “/{id}”)

 public Foo findById(@PathVariable(“id”) Long id) {

 return RestPreconditions.checkFound(service.findById(id));

 }

 @PostMapping

 @ResponseStatus(HttpStatus.CREATED)

 public Long create(@RequestBody Foo resource) {

 Preconditions.checkNotNull(resource);

 return service.create(resource);

 }

 @PutMapping(value = “/{id}”)

 @ResponseStatus(HttpStatus.OK)

 public void update(@PathVariable(“id”) Long id, @RequestBody Foo resource) {

 Preconditions.checkNotNull(resource);

 RestPreconditions.checkNotNull(service.getById(resource.getId()));

 service.update(resource);

 }

 @DeleteMapping(value = “/{id}”)

 @ResponseStatus(HttpStatus.OK)

 public void delete(@PathVariable(“id”) Long id) {

 service.deleteById(id);

 }

}

17

You may have noticed I’m using a straightforward, Guava-style
RestPreconditions utility:

public class RestPreconditions {

 public static <T> T checkFound(T resource) {

 if (resource == null) {

 throw new MyResourceNotFoundException();

 }

 return resource;

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

The controller implementation is non-public – this is because it doesn’t
need to be.

Usually, the controller is the last in the chain of dependencies. It receives
HTTP requests from the Spring front controller (the DispatcherServlet) and
simply delegates them forward to a service layer. If there’s no use case where
the controller has to be injected or manipulated through a direct reference,
then I prefer not to declare it as public.

The request mappings are straightforward. As with any controller, the
actual value of the mapping, as well as the HTTP method, determine the
target method for the request. @RequestBody will bind the parameters of
the method to the body of the HTTP request, whereas @ResponseBody does
the same for the response and return type.

The @RestController is a shorthand to include both the @ResponseBody
and the @Controller annotations in our class.

They also ensure that the resource will be marshalled and unmarshalled
using the correct HTTP converter. Content negotiation will take place to
choose which one of the active converters will be used, based mostly on
the Acceptheader, although other HTTP headers may be used to determine
the representation as well.

https://www.baeldung.com/spring-controller-vs-restcontroller

18

6. Mapping the HTTP Response Code

The status codes of the HTTP response are one of the most important parts
of the REST service, and the subject can quickly become very complicated.
Getting these right can be what makes or breaks the service.

6.1. Unmapped Requests

If Spring MVC receives a request which doesn’t have a mapping, it considers
the request not to be allowed and returns a 405 METHOD NOT ALLOWED
back to the client.

It’s also a good practice to include the Allow HTTP header when returning a
405 to the client, to specify which operations are allowed. This is the standard
behavior of Spring MVC and doesn’t require any additional configuration.

6.2. Valid Mapped Requests

For any request that does have a mapping, Spring MVC considers the
request valid and responds with 200 OK if no other status code is specified
otherwise.

It’s because of this that the controller declares different @ResponseStatus
for the create, update and delete actions but not for get, which should indeed
return the default 200 OK.

6.3. Client Error

In the case of a client error, custom exceptions are defined and mapped to
the appropriate error codes.

Simply throwing these exceptions from any of the layers of the web tier will
ensure Spring maps the corresponding status code on the HTTP response:

19

These exceptions are part of the REST API and, as such, should only be used
in the appropriate layers corresponding to REST; if for instance, a DAO/DAL
layer exists, it should not use the exceptions directly.

Note also that these are not checked exceptions but runtime exceptions –
in line with Spring practices and idioms.

@ResponseStatus(HttpStatus.BAD_REQUEST)

public class BadRequestException extends RuntimeException {

 //

}

@ResponseStatus(HttpStatus.NOT_FOUND)

public class ResourceNotFoundException extends RuntimeException {

 //

}

1.

2.

3.

4.

5.

6.

7.

8.

6.4. Using @ExceptionHandler

Another option to map custom exceptions on specific status codes is
to use the @ExceptionHandler annotation in the controller. The problem
with that approach is that the annotation only applies to the controller in
which it’s defined. This means that we need to declares in each controller
individually.

Of course, there are more ways to handle errors in both Spring and Spring
Boot that offer more flexibility.

https://www.baeldung.com/exception-handling-for-rest-with-spring

20

7. Additional Maven Dependencies

<dependencies>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.9.8</version>

 </dependency>

 <dependency>

 <groupId>javax.xml.bind</groupId>

 <artifactId>jaxb-api</artifactId>

 <version>2.3.1</version>

 <scope>runtime</scope>

 </dependency>

</dependencies>

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

In addition to the spring-webmvc dependency required for the standard web
application, we’ll need to set up content marshalling and unmarshalling for
the REST API:

These are the libraries used to convert the representation of the REST
resource to either JSON or XML.

7.1. Using Spring Boot

If we want to retrieve JSON-formatted resources, Spring Boot provides
support for different libraries, namely Jackson, Gson and JSON-B.

Auto-configuration is carried out by just including any of the mapping
libraries in the classpath.

Usually, if we’re developing a web application, we’ll just add the
spring-boot-starter-web dependency and rely on it to include all the
necessary artifacts to our project:

https://www.baeldung.com/spring-with-maven#mvc
https://www.baeldung.com/spring-with-maven#mvc

21

Spring Boot uses Jackson by default.

If we want to serialize our resources in an XML format, we’ll have to add the
Jackson XML extension (jackson-dataformat-xml) to our dependencies, or
fallback to the JAXB implementation (provided by default in the JDK) by
using the @XmlRootElement annotation on our resource.

1.

2.

3.

4.

5.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <version>2.1.2.RELEASE</version>

</dependency>

22

8. Conclusion

This chapter illustrated how to implement and configure a REST Service
using Spring and Java-based configuration.

All the code of this chapter is available over on GitHub.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

23

3: Http Message Converters with the
Spring Framework

24

1. Overview

This chapter describes how to Configure HttpMessageConverters in Spring.

Simply put, we can use message converters to marshall and unmarshall Java
Objects to and from JSON, XML, etc – over HTTP.

25

2. The Basics

2.1. Enable Web MVC

To start with, the Web Application needs to be configured with Spring MVC
support. A convenient and very customizable way to do this is to use the @
EnableWebMvc annotation:

@EnableWebMvc

@Configuration

@ComponentScan({ “com.baeldung.web” })

public class WebConfig implements WebMvcConfigurer {

 ...

}

1.

2.

3.

4.

5.

6.

Note that this class implements WebMvcConfigurer – which will allow us
to change the default list of Http Converters with our own.

2.2. The Default Message Converters

By default, the following HttpMessageConverters instances are
pre-enabled:

• ByteArrayHttpMessageConverter – converts byte arrays

• StringHttpMessageConverter – converts String

• ResourceHttpMessageConverter – converts org.springframework.core.io.Resource for any type of octet stream

• SourceHttpMessageConverter – converts javax.xml.transform.Source

• FormHttpMessageConverter – converts form data to/from a MultiValueMap<String, String>.

• Jaxb2RootElementHttpMessageConverter – converts Java objects to/from XML (added only if JAXB2 is

present on the classpath)

• MappingJackson2HttpMessageConverter – converts JSON (added only if Jackson 2 is present on the

classpath)

• MappingJacksonHttpMessageConverter – converts JSON (added only if Jackson is present on the classpath)

• AtomFeedHttpMessageConverter – converts Atom feeds (added only if Rome is present on the classpath)

• RssChannelHttpMessageConverter – converts RSS feeds (added only if Rome is present on the classpath)

26

3. Client-Server Communication – JSON only

3.1. High-Level Content Negotiation

Each HttpMessageConverter implementation has one or several associated
MIME Types.

When receiving a new request, Spring will use the Accept header to
determine the media type that it needs to respond with.

It will then try to find a registered converter that’s capable of handling that
specific media type. Finally, it will use this to convert the entity and send
back the response.

The process is similar for receiving a request which contains JSON
information. The framework will use the Content-Type header to determine
the media type of the request body.

It will then search for a HttpMessageConverter that can convert the body
sent by the client to a Java object.

Let’s clarify this with a quick example:

the client sends a GET request to/foos with the Accept header set to
application/json – to get all Foo resources as JSON

the foo spring controller is hit and returns the corresponding Foo Java entities

Spring then uses one of the Jackson message converters to marshall the
entities to JSON

Let’s now look at the specifics of how this works – and how we can leverage
the @ResponseBody and @RequestBody annotations.

27

3.2. @ResponseBody

@ResponseBody on a controller method indicates to Spring that the return
value of the method is serialized directly to the body of the HTTP Response.
As discussed above, the Accept header specified by the Client will be used
to choose the appropriate Http Converter to marshall the entity.

Let’s look at a simple example:

1.

2.

3.

4.

@GetMapping(“/{id}”)

public @ResponseBody Foo findById(@PathVariable long id) {

 return fooService.findById(id);

}

Now, the client will specify the Accept header to application/json in the
request – example curl command:

1.

2.

curl --header “Accept: application/json”

http://localhost:8080/spring-boot-rest/foos/1

The Foo class:

1.

2.

3.

4.

public class Foo {

 private long id;

 private String name;

}

And the Http Response Body:

1.

2.

3.

4.

{

 “id”: 1,

 “name”: “Paul”,

}

28

3.3. @RequestBody

We can use the @RequestBody annotation on the argument of a Controller
method to indicate that the body of the HTTP Request is deserialized to
that particular Java entity. To determine the appropriate converter, Spring
will use the Content-Type header from the client request.

Let’s look at an example:

1.

2.

3.

4.

5.

@PutMapping(“/{id}”)

public @ResponseBody void update(@RequestBody Foo foo, @PathVariable String

id) {

 fooService.update(foo);

}

Next, let’s consume this with a JSON object – we’re specifying
“Content-Type“ to be application/json:

1.

2.

curl -i -X PUT -H “Content-Type: application/json”

-d ‘{“id”:”83”,”name”:”klik”}’ http://localhost:8080/spring-boot-rest/foos/1

We get back a 200 OK – a successful response:

1.

2.

3.

4.

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Length: 0

Date: Fri, 10 Jan 2014 11:18:54 GMT

29

We can also customize the message converters by implementing the
WebMvcConfigurer interface & overriding the configureMessageConverters
method:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

@EnableWebMvc

@Configuration

@ComponentScan({ “com.baeldung.web” })

public class WebConfig implements WebMvcConfigurer {

 @Override

 public void configureMessageConverters(

 List<HttpMessageConverter<?>> converters) {

 messageConverters.add(createXmlHttpMessageConverter());

 messageConverters.add(new MappingJackson2HttpMessageConverter());

 }

 private HttpMessageConverter<Object> createXmlHttpMessageConverter() {

 MarshallingHttpMessageConverter xmlConverter =

 new MarshallingHttpMessageConverter();

 XStreamMarshaller xstreamMarshaller = new XStreamMarshaller();

 xmlConverter.setMarshaller(xstreamMarshaller);

 xmlConverter.setUnmarshaller(xstreamMarshaller);

 return xmlConverter;

 }

}

4. Custom Converters Configuration

And here is the corresponding XML configuration:

30

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

<context:component-scan base-package=”org.baeldung.web” />

<mvc:annotation-driven>

 <mvc:message-converters>

 <bean class=”org.springframework.http.converter.json.

MappingJackson2HttpMessageConverter”/>

 <bean class=”org.springframework.http.converter.xml.

MarshallingHttpMessageConverter”>

 <property name=”marshaller” ref=”xstreamMarshaller” />

 <property name=”unmarshaller” ref=”xstreamMarshaller” />

 </bean>

 </mvc:message-converters>

</mvc:annotation-driven>

<bean id=”xstreamMarshaller” class=”org.springframework.oxm.xstream.

XStreamMarshaller” />

In this example, we’re creating a new converter – the
MarshallingHttpMessageConverter – and using the Spring XStream support
to configure it. This allows a great deal of flexibility since we’re working with
the low-level APIs of the underlying marshalling framework – in this case
XStream – and we can configure that however we want.

Note that this example requires adding the XStream library to the classpath.

Also be aware that by extending this support class, we’re losing the default
message converters which were previously pre-registered.

We can of course now do the same for Jackson – by defining our own
MappingJackson2HttpMessageConverter. We can now set a custom
ObjectMapper on this converter and have it configured as we need to.

In this case, XStream was the selected marshaller/unmarshaller
implementation, but others like CastorMarshaller can be used as well.

At this point – with XML enabled on the back end – we can consume the API
with XML Representations:

1.

2.

curl --header “Accept: application/xml”

http://localhost:8080/spring-boot-rest/foos/1

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/oxm/Marshaller.html

31

If we’re using Spring Boot we can avoid implementing the WebMvcConfigurer
and adding all the message converters manually as we did above.

We can just define different HttpMessageConverter beans in the context,
and Spring Boot will add them automatically to the autoconfiguration that
it creates:

1.

2.

3.

4.

5.

6.

7.

8.

9.

@Bean

public HttpMessageConverter<Object> createXmlHttpMessageConverter() {

 MarshallingHttpMessageConverter xmlConverter = new

MarshallingHttpMessageConverter();

 // ...

 return xmlConverter;

}

4.1. Spring Boot Support

32

As well as with the server side, HTTP message conversion can be configured
in the client side on the Spring RestTemplate.

We’re going to configure the template with the Accept and Content-Type
headers when appropriate. Then we’ll try to consume the REST API with full
marshalling and unmarshalling of the Foo Resource – both with JSON and
with XML.

5. Using Spring’s RestTemplate with Http Message Converters

5.1. Retrieving the Resource with no Accept Header

1.

2.

3.

4.

5.

6.

7.

@Test

public void testGetFoo() {

 String URI = “http://localhost:8080/spring-boot-rest/foos/{id}”;

 RestTemplate restTemplate = new RestTemplate();

 Foo foo = restTemplate.getForObject(URI, Foo.class, “1”);

 Assert.assertEquals(new Integer(1), foo.getId());

}

5.2. Retrieving a Resource with application/xml Accept Header

Let’s now explicitly retrieve the Resource as an XML Representation. We’re
going to define a set of Converters and set these on the RestTemplate.

Because we’re consuming XML, we’re going to use the same XStream
marshaller as before:

33

@Test

public void givenConsumingXml_whenReadingTheFoo_thenCorrect() {

 String URI = BASE_URI + “foos/{id}”;

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.setMessageConverters(getMessageConverters());

 HttpHeaders headers = new HttpHeaders();

 headers.setAccept(Arrays.asList(MediaType.APPLICATION_XML));

 HttpEntity<String> entity = new HttpEntity<String>(headers);

 ResponseEntity<Foo> response =

 restTemplate.exchange(URI, HttpMethod.GET, entity, Foo.class, “1”);

 Foo resource = response.getBody();

 assertThat(resource, notNullValue());

}

private List<HttpMessageConverter<?>> getMessageConverters() {

 XStreamMarshaller marshaller = new XStreamMarshaller();

 MarshallingHttpMessageConverter marshallingConverter =

 new MarshallingHttpMessageConverter(marshaller);

 List<HttpMessageConverter<?>> converters =

 ArrayList<HttpMessageConverter<?>>();

 converters.add(marshallingConverter);

 return converters;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

34

Similarly, let’s now consume the REST API by asking for JSON:

@Test

public void givenConsumingJson_whenReadingTheFoo_thenCorrect() {

 String URI = BASE_URI + “foos/{id}”;

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.setMessageConverters(getMessageConverters());

 HttpHeaders headers = new HttpHeaders();

 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));

 HttpEntity<String> entity = new HttpEntity<String>(headers);

 ResponseEntity<Foo> response =

 restTemplate.exchange(URI, HttpMethod.GET, entity, Foo.class, “1”);

 Foo resource = response.getBody();

 assertThat(resource, notNullValue());

}

private List<HttpMessageConverter<?>> getMessageConverters() {

 List<HttpMessageConverter<?>> converters =

 new ArrayList<HttpMessageConverter<?>>();

 converters.add(new MappingJackson2HttpMessageConverter());

 return converters;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

5.3. Retrieving a Resource with application/json Accept
Header

35

Finally, let’s also send JSON data to the REST API and specify the media
type of that data via the Content-Type header:

@Test

public void givenConsumingXml_whenWritingTheFoo_thenCorrect() {

 String URI = BASE_URI + “foos/{id}”;

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.setMessageConverters(getMessageConverters());

 Foo resource = new Foo(4, “jason”);

 HttpHeaders headers = new HttpHeaders();

 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));

 headers.setContentType((MediaType.APPLICATION_XML));

 HttpEntity<Foo> entity = new HttpEntity<Foo>(resource, headers);

 ResponseEntity<Foo> response = restTemplate.exchange(

 URI, HttpMethod.PUT, entity, Foo.class, resource.getId());

 Foo fooResponse = response.getBody();

 Assert.assertEquals(resource.getId(), fooResponse.getId());

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

What’s interesting here is that we’re able to mix the media types – we’re
sending XML data but we’re waiting for JSON data back from the server.
This shows just how powerful the Spring conversion mechanism really is.

5.4. Update a Resource with XML Content-Type

36

6. Conclusion

In this chapter, we looked at how Spring MVC allows us to specify and fully
customize Http Message Converters to automatically marshall/unmarshall
Java Entities to and from XML or JSON. This is, of course, a simplistic definition,
and there is so much more that the message conversion mechanism can do
– as we can see from the last test example.

We have also looked at how to leverage the same powerful mechanism
with the RestTemplate client – leading to a fully type-safe way of consuming
the API.

As always, the code presented in this chapter is available over on GitHub.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

37

4: Spring’s RequestBody and ResponseBody
Annotations

38

1. Introduction

In this quick chapter, we provide a concise overview of the Spring
@RequestBody and @ResponseBody annotations.

39

2. @RequestBody

Simply put, the @RequestBody annotation maps the HttpRequest body to a
transfer or domain object, enabling automatic deserialization of the inbound
HttpRequest body onto a Java object.

First, let’s have a look at a Spring controller method:

1.

2.

3.

4.

5.

6.

7.

@PostMapping(“/request”)

public ResponseEntity postController(

 @RequestBody LoginForm loginForm) {

 exampleService.fakeAuthenticate(loginForm);

 return ResponseEntity.ok(HttpStatus.OK);

}

Spring automatically deserializes the JSON into a Java type assuming an
appropriate one is specified. By default, the type we annotate with the
@RequestBody annotation must correspond to the JSON sent from our
client-side controller:

1.

2.

3.

4.

5.

public class LoginForm {

 private String username;

 private String password;

 // ...

}

Here, the object we use to represent the HttpRequest body maps to our
LoginForm object. Let’s test this using cURL:

1.

2.

3.

4.

5.

curl -i \

-H “Accept: application/json” \

-H “Content-Type:application/json” \

-X POST --data

 ‘{“username”: “johnny”, “password”: “password”}’ “https://localhost:8080/.../request”

This is all that is needed for a Spring REST API and an Angular client using
the @RequestBody annotation!

40

3. @ResponseBody

The @ResponseBody annotation tells a controller that the object returned is
automatically serialized into JSON and passed back into the HttpResponse
object.
Suppose we have a custom Response object:

1.

2.

3.

4.

5.

public class ResponseTransfer {

 private String text;

 // standard getters/setters

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

@Controller

@RequestMapping(“/post”)

public class ExamplePostController {

 @Autowired

 ExampleService exampleService;

 @PostMapping(“/response”)

 @ResponseBody

 public ResponseTransfer postResponseController(

 @RequestBody LoginForm loginForm) {

 return new ResponseTransfer(“Thanks For Posting!!!”);

 }

}

Next, the associated controller can be implemented:

In the developer console of our browser or using a tool like Postman, we can
see the following response:

{“text”:”Thanks For Posting!!!”}1.

Remember, we don’t need to annotate the @RestController-annotated
controllers with the @ResponseBody annotation since it’s done by default
here.

41

4. Conclusion

We’ve built a simple Angular client for the Spring app that demonstrates
how to use the @RequestBody and @ResponseBody annotations.

As always code samples are available over on GitHub.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

42

5: Entity To DTO Conversion for a Spring
REST API

43

1. Overview

In this tutorial, we’ll handle the conversions that need to happen between
the internal entities of a Spring application and the external DTOs (Data
Transfer Objects) that are published back to the client.

44

2. Model Mapper

Let’s start by introducing the main library that we’re going to use to perform
this entity-DTO conversion – ModelMapper.

We will need this dependency in the pom.xml:

We’ll then define the ModelMapper bean in our Spring configuration:

1.

2.

3.

4.

5.

<dependency>

 <groupId>org.modelmapper</groupId>

 <artifactId>modelmapper</artifactId>

 <version>2.3.2</version>

</dependency>

1.

2.

3.

4.

@Bean

public ModelMapper modelMapper() {

 return new ModelMapper();

}

http://modelmapper.org/getting-started/

45

3. The DTO

Next, let’s introduce the DTO side of this two-sided problem – PostDto:

public class PostDto {

 private static final SimpleDateFormat dateFormat

 = new SimpleDateFormat(“yyyy-MM-dd HH:mm”);

 private Long id;

 private String title;

 private String url;

 private String date;

 private UserDto user;

 public Date getSubmissionDateConverted(String timezone) throws ParseException {

 dateFormat.setTimeZone(TimeZone.getTimeZone(timezone));

 return dateFormat.parse(this.date);

 }

 public void setSubmissionDate(Date date, String timezone) {

 dateFormat.setTimeZone(TimeZone.getTimeZone(timezone));

 this.date = dateFormat.format(date);

 }

 // standard getters and setters

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Note that the two custom date-related methods handle the date conversion
back and forth between the client and the server:

getSubmissionDateConverted() method converts a date String into a date in
server’s timezone to use it in persisting Post entity

setSubmissionDate() method is to set PostDto’s date to Post’s Date instance
in the current user’s timezone

46

4. The Service Layer

Let’s now look at a service level operation – which will obviously work with
the Entity (not the DTO):

public List<Post> getPostsList(

 int page, int size, String sortDir, String sort) {

 PageRequest pageReq

 = PageRequest.of(page, size, Sort.Direction.fromString(sortDir), sort);

 Page<Post> posts = postRepository

 .findByUser(userService.getCurrentUser(), pageReq);

 return posts.getContent();

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

We’re going to have a look at the layer above service next – the controller
layer. This is where the conversion will actually happen as well.

47

5. The Controller Layer

Let’s now have a look at a standard controller implementation, exposing the
simple REST API for the Post resource.

We’re going to show here a few simple CRUD operations: create, update, get
one and get all. And given the operations are pretty straightforward, we are
especially interested in the Entity-DTO conversion aspects:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

@Controller

class PostRestController {

 @Autowired

 private IPostService postService;

 @Autowired

 private IUserService userService;

 @Autowired

 private ModelMapper modelMapper;

 @RequestMapping(method = RequestMethod.GET)

 @ResponseBody

 public List<PostDto> getPosts(...) {

 //...

 List<Post> posts = postService.getPostsList(page, size, sortDir, sort);

 return posts.stream()

 .map(post -> convertToDto(post))

 .collect(Collectors.toList());

 }

 @RequestMapping(method = RequestMethod.POST)

 @ResponseStatus(HttpStatus.CREATED)

 @ResponseBody

 public PostDto createPost(@RequestBody PostDto postDto) {

 Post post = convertToEntity(postDto);

 Post postCreated = postService.createPost(post));

 return convertToDto(postCreated);

 }

48

@RequestMapping(value = “/{id}”, method = RequestMethod.GET)

 @ResponseBody

 public PostDto getPost(@PathVariable(“id”) Long id) {

 return convertToDto(postService.getPostById(id));

 }

 @RequestMapping(value = “/{id}”, method = RequestMethod.PUT)

 @ResponseStatus(HttpStatus.OK)

 public void updatePost(@RequestBody PostDto postDto) {

 Post post = convertToEntity(postDto);

 postService.updatePost(post);

 }

}

31.

32.

33.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

And here is our conversion from Post entity to PostDto:

1.

2.

3.

4.

5.

6.

private PostDto convertToDto(Post post) {

 PostDto postDto = modelMapper.map(post, PostDto.class);

 postDto.setSubmissionDate(post.getSubmissionDate(),

 userService.getCurrentUser().getPreference().getTimezone());

 return postDto;

}

And here is the conversion from DTO to an entity:

private Post convertToEntity(PostDto postDto) throws ParseException {

 Post post = modelMapper.map(postDto, Post.class);

 post.setSubmissionDate(postDto.getSubmissionDateConverted(

 userService.getCurrentUser().getPreference().getTimezone()));

 if (postDto.getId() != null) {

 Post oldPost = postService.getPostById(postDto.getId());

 post.setRedditID(oldPost.getRedditID());

 post.setSent(oldPost.isSent());

 }

 return post;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

So, as you can see, with the help of the model mapper, the conversion logic
is quick and simple – we’re using the API of the mapper and getting the
data converted without writing a single line of conversion logic.

49

6. Unit Testing

Finally, let’s do a very simple test to make sure the conversions between the
entity and the DTO work well:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

public class PostDtoUnitTest {

 private ModelMapper modelMapper = new ModelMapper();

 @Test

 public void whenConvertPostEntityToPostDto_thenCorrect() {

 Post post = new Post();

 post.setId(Long.valueOf(1));

 post.setTitle(randomAlphabetic(6));

 post.setUrl(“www.test.com”);

 PostDto postDto = modelMapper.map(post, PostDto.class);

 assertEquals(post.getId(), postDto.getId());

 assertEquals(post.getTitle(), postDto.getTitle());

 assertEquals(post.getUrl(), postDto.getUrl());

 }

 @Test

 public void whenConvertPostDtoToPostEntity_thenCorrect() {

 PostDto postDto = new PostDto();

 postDto.setId(Long.valueOf(1));

 postDto.setTitle(randomAlphabetic(6));

 postDto.setUrl(“www.test.com”);

 Post post = modelMapper.map(postDto, Post.class);

 assertEquals(postDto.getId(), post.getId());

 assertEquals(postDto.getTitle(), post.getTitle());

 assertEquals(postDto.getUrl(), post.getUrl());

 }

}

50

7. Conclusion

This was a chapter on simplifying the conversion from Entity to DTO and
from DTO to Entity in a Spring REST API, by using the model mapper library
instead of writing these conversions by hand.

The full source code for the examples is available in the GitHub project.

https://github.com/eugenp/tutorials/tree/master/spring-boot

51

6: Error Handling for REST with Spring

52

1. Overview

This chapter will illustrate how to implement Exception Handling with
Spring for a REST API. We’ll also get a bit of historical overview and see
which new options the different versions introduced.

Before Spring 3.2, the two main approaches to handling exceptions in a
Spring MVC application were: HandlerExceptionResolver or the
@ExceptionHandler annotation. Both of these have some clear downsides.

Since 3.2 we’ve had the @ControllerAdvice annotation to address the
limitations of the previous two solutions and to promote a unified exception
handling throughout a whole application.

Now, Spring 5 introduces the ResponseStatusException class: A fast way for
basic error handling in our REST APIs.

All of these do have one thing in common – they deal with the separation
of concerns very well. The app can throw exception normally to indicate a
failure of some kind – exceptions which will then be handled separately.

Finally, we’ll see what Spring Boot brings to the table, and how we can
configure it to suit our needs.

53

2. Solution 1 – The Controller level @ExceptionHandler

The first solution works at the @Controller level – we will define a method to
handle exceptions, and annotate that with @ExceptionHandler:

1.

2.

3.

4.

5.

6.

7.

8.

public class FooController{

 //...

 @ExceptionHandler({ CustomException1.class, CustomException2.class })

 public void handleException() {

 //

 }

}

This approach has a major drawback – the @ExceptionHandler annotated
method is only active for that particular controller, not globally for the
entire application. Of course, adding this to every controller makes it not
well suited for a general exception handling mechanism.

We can work around this limitation by having all controllers extend a Base
controller class – however, this can be a problem for applications where, for
whatever reason, this isn’t possible. For example, the controllers may already
extend from another base class which may be in another jar or not directly
modifiable, or may themselves not be directly modifiable.

Next, we’ll look at another way to solve the exception handling problem –
one that is global and doesn’t include any changes to existing artifacts such
as controllers.

54

3. Solution 2 – The HandlerExceptionResolver

The second solution is to define an HandlerExceptionResolver – this will
resolve any exception thrown by the application. It will also allow us to
implement a uniform exception handling mechanism in our REST API.

Before going for a custom resolver, let’s go over the existing implementations.

This resolver was introduced in Spring 3.1 and is enabled by default in the
DispatcherServlet. This is actually the core component of how the
@ExceptionHandler mechanism presented earlier works.

3.1. ExceptionHandlerExceptionResolver

This resolver was introduced in Spring 3.0, and it’s enabled by default in the
DispatcherServlet. It’s used to resolve standard Spring exceptions to their
corresponding HTTP status codes, namely Client error – 4xx and Server error
– 5xx status codes. Here’s the full list of the Spring exceptions it handles, and
how they map to status codes.

While it does set the Status Code of the response properly, one limitation is
that it doesn’t set anything to the body of the response. And for a REST API
– the status code is really not enough information to present to the client
– the response has to have a body as well, to allow the application to give
additional information about the failure.

This can be solved by configuring view resolution and rendering error content
through ModelAndView, but the solution is clearly not optimal. That’s why
Spring 3.2 introduced a better option that we’ll discuss in a later section.

3.2. DefaultHandlerExceptionResolver

http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-ann-rest-spring-mvc-exceptions

55

This resolver was also introduced in Spring 3.0 and is enabled by default in
the DispatcherServlet. Its main responsibility is to use the @ResponseStatus
annotation available on custom exceptions and to map these exceptions to
HTTP status codes.

Such a custom exception may look like:

3.3. ResponseStatusExceptionResolver

@ResponseStatus(value = HttpStatus.NOT_FOUND)

public class ResourceNotFoundException extends RuntimeException {

 public ResourceNotFoundException() {

 super();

 }

 public ResourceNotFoundException(String message, Throwable cause) {

 super(message, cause);

 }

 public ResourceNotFoundException(String message) {

 super(message);

 }

 public ResourceNotFoundException(Throwable cause) {

 super(cause);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Same as the DefaultHandlerExceptionResolver, this resolver is limited in the
way it deals with the body of the response – it does map the status code on
the response, but the body is still null.

3.4. SimpleMappingExceptionResolver and
AnnotationMethodHandlerExceptionResolver

The SimpleMappingExceptionResolver has been around for quite some time –
it comes out of the older Spring MVC model and is not very relevant for a REST
Service. We basically use it to map exception class names to view names. The
AnnotationMethodHandlerExceptionResolver was introduced in Spring 3.0 to
handle exceptions through the @ExceptionHandler annotation but has been
deprecated by ExceptionHandlerExceptionResolver as of Spring 3.2.

56

The combination of DefaultHandlerExceptionResolver and
ResponseStatusExceptionResolver goes a long way towards providing
a good error handling mechanism for a Spring RESTful service. The
downside is – as mentioned before – no control over the body of the
response.

Ideally, we’d like to be able to output either JSON or XML, depending on
what format the client has asked for (via the Accept header).

This alone justifies creating a new, custom exception resolver:

3.5. Custom HandlerExceptionResolver

@Component

public class RestResponseStatusExceptionResolver

 extends AbstractHandlerExceptionResolver {

 @Override

 protected ModelAndView doResolveException(

 HttpServletRequest request,

 HttpServletResponse response,

 Object handler,

 Exception ex) {

 try {

 if (ex instanceof IllegalArgumentException) {

 return handleIllegalArgument(

 (IllegalArgumentException) ex,

 response,

 handler);

 }

 ...

 } catch (Exception handlerException) {

 logger.warn(“Handling of [“ + ex.getClass().getName() +

 “] resulted in Exception”, handlerException);

 }

 return null;

 }

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

57

One detail to notice here is that we have access to the request itself, so we
can consider the value of the Acceptheader sent by the client.

For example, if the client asks for application/json then, in the case of an
error condition, we’d want to make sure we return a response body encoded
with application/json.

The other important implementation detail is that we return a ModelAndView
– this is the body of the response and it will allow us to set whatever is
necessary on it.

This approach is a consistent and easily configurable mechanism for the
error handling of a Spring REST Service. It does, however, have limitations:
it’s interacting with the low-level HtttpServletResponse and it fits into the old
MVC model which uses ModelAndView – so there’s still room for improvement.

 private ModelAndView handleIllegalArgument(

 IllegalArgumentException ex,

 HttpServletResponse response) throws IOException {

 response.sendError(HttpServletResponse.SC_CONFLICT);

 String accept = request.getHeader(HttpHeaders.ACCEPT);

 ...

 return new ModelAndView();

 }

}

25.

26.

27.

28.

29.

30.

31.

32.

33.

58

4. Solution 3 – @ControllerAdvice

Spring 3.2 brings support for a global @ExceptionHandler with the
@ControllerAdvice annotation. This enables a mechanism that breaks away
from the older MVC model and makes use of ResponseEntity along with the
type safety and flexibility of @ExceptionHandler:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

@ControllerAdvice

public class RestResponseEntityExceptionHandler

 extends ResponseEntityExceptionHandler {

 @ExceptionHandler(value

 = { IllegalArgumentException.class, IllegalStateException.class })

 protected ResponseEntity<Object> handleConflict(

 RuntimeException ex, WebRequest request) {

 String bodyOfResponse = “This should be application specific”;

 return handleExceptionInternal(ex, bodyOfResponse,

 new HttpHeaders(), HttpStatus.CONFLICT, request);

 }

}

Spring 3.2 brings support for a global @ExceptionHandler with the
@ControllerAdvice annotation. This enables a mechanism that breaks away from
the older MVC model and makes use of ResponseEntity along with the type safety
and flexibility of @ExceptionHandler:
The actual mechanism is extremely simple but also very flexible. It gives us:

Full control over the body of the response as well as the status code

Mapping of several exceptions to the same method, to be handled together, and
It makes good use of the newer RESTful ResponseEntity response

One thing to keep in mind here is to match the exceptions declared with
@ExceptionHandler with the exception used as the argument of the method.
If these don’t match, the compiler will not complain – no reason it should, and
Spring will not complain either. However, when the exception is actually thrown
at runtime, the exception resolving mechanism will fail with:

1.

2.

java.lang.IllegalStateException: No suitable resolver for argument [0] [type=...]

HandlerMethod details: ...

59

Spring 5 introduced the ResponseStatusException class. We can create an
instance of it providing an HttpStatus and optionally a reason and a cause:

@GetMapping(value = “/{id}”)

public Foo findById(@PathVariable(“id”) Long id, HttpServletResponse response) {

 try {

 Foo resourceById = RestPreconditions.checkFound(service.findOne(id));

 eventPublisher.publishEvent(new SingleResourceRetrievedEvent(this,

response));

 return resourceById;

 }

 catch (MyResourceNotFoundException exc) {

 throw new ResponseStatusException(

 HttpStatus.NOT_FOUND, “Foo Not Found”, exc);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

5. Solution 4 – ResponseStatusException (Spring 5 & Above)

What are the benefits of using ResponseStatusException?

Excellent for prototyping: We can implement a basic solution quite fast

One type, multiple status codes: One exception type can lead to multiple
different responses. This reduces tight coupling compared to the
@ExceptionHandler

We won’t have to create as many custom exception classes

More control over exception handling since the exceptions can be created
programmatically

60

And what about the tradeoffs?

There’s no unified way of exception handling: It’s more difficult to enforce
some application-wide conventions, as opposed to @ControllerAdvice which
provides a global approach

Code duplication: We may find ourselves replicating code in multiple
controllers

We should also note that it’s possible to combine different approaches within
one application.

For example, we can implement a @ControllerAdvice globally, but also
ResponseStatusExceptions locally. However, we need to be careful: If the
same exception can be handled in multiple ways, we may notice some
surprising behavior. A possible convention is to handle one specific kind of
exception always in one way.

61

6. Handle Access Denied in Spring Security

Access Denied occurs when an authenticated user tries to access resources
that he doesn’t have enough authorities to access.

First, let’s look at the MVC style of the solution and see how to customize an
error page for Access Denied:

The XML configuration:

6.1. MVC – Custom Error Page

<http>

 <intercept-url pattern=”/admin/*” access=”hasAnyRole(‘ROLE_ADMIN’)”/>

 ...

 <access-denied-handler error-page=”/my-error-page” />

</http>

1.

2.

3.

4.

5.

And the Java configuration:

@Override

protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers(“/admin/*”).hasAnyRole(“ROLE_ADMIN”)

 ...

 .and()

 .exceptionHandling().accessDeniedPage(“/my-error-page”);

}

1.

2.

3.

4.

5.

6.

7.

8.

When users try to access a resource without having enough authorities, they
will be redirected to /my-error-page.

62

Next, let’s see how to write our custom AccessDeniedHandler:

@Component

public class CustomAccessDeniedHandler implements AccessDeniedHandler {

 @Override

 public void handle

 (HttpServletRequest request, HttpServletResponse response,

AccessDeniedException ex)

 throws IOException, ServletException {

 response.sendRedirect(“/my-error-page”);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

And now let’s configure it using XML Configuration:

<http>

 <intercept-url pattern=”/admin/*” access=”hasAnyRole(‘ROLE_ADMIN’)”/>

 ...

 <access-denied-handler ref=”customAccessDeniedHandler” />

</http>

1.

2.

3.

4.

5.

Or using Java Configuration:

@Autowired

private CustomAccessDeniedHandler accessDeniedHandler;

@Override

protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers(“/admin/*”).hasAnyRole(“ROLE_ADMIN”)

 ...

 .and()

 .exceptionHandling().accessDeniedHandler(accessDeniedHandler)

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Note how – in our CustomAccessDeniedHandler, we can customize the
response as we wish by redirecting or display a custom error message.

6.2. Custom AccessDeniedHandler

63

Finally, let’s see how to handle method-level security using @PreAuthorize,
@PostAuthorize, and @Secured Access Denied.

We’ll, of course, use the global exception handling mechanism that we
discussed earlier to handle the AccessDeniedException as well:

@ControllerAdvice

public class RestResponseEntityExceptionHandler

 extends ResponseEntityExceptionHandler {

 @ExceptionHandler({ AccessDeniedException.class })

 public ResponseEntity<Object> handleAccessDeniedException(

 Exception ex, WebRequest request) {

 return new ResponseEntity<Object>(

 “Access denied message here”, new HttpHeaders(), HttpStatus.FORBIDDEN);

 }

 ...

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

6.3. REST and Method Level Security

64

7. Spring Boot Support

Spring Boot provides an ErrorController implementation to handle errors
in a sensible way.

In a nutshell, it serves a fallback error page for browsers (aka the Whitelabel
Error Page), and a JSON response for RESTful, non HTML requests:

{

 “timestamp”: “2019-01-17T16:12:45.977+0000”,

 “status”: 500,

 “error”: “Internal Server Error”,

 “message”: “Error processing the request!”,

 “path”: “/my-endpoint-with-exceptions”

}

1.

2.

3.

4.

5.

6.

7.

As usual, Spring Boot allows configuring these features with properties:

server.error.whitelabel.enabled: can be used to disable the Whitelabel Error
Page and rely on the servlet container to provide an HTML error message

server.error.include-stacktrace: with an always value, it includes the stacktrace
in both the HTML and the JSON default response

Apart from these properties, we can provide our own view-resolver mapping
for /error, overridding the Whitelabel Error Page.

We can also customize the attributes that we want to show in the response
by including an ErrorAttributes bean in the context. We can extend the
DefaultErrorAttributes class provided by Spring Boot to make things easier:

65

@Component

public class MyCustomErrorAttributes extends DefaultErrorAttributes {

 @Override

 public Map<String, Object> getErrorAttributes(WebRequest webRequest,

boolean includeStackTrace) {

 Map<String, Object> errorAttributes = super.

getErrorAttributes(webRequest, includeStackTrace);

 errorAttributes.put(“locale”, webRequest.getLocale()

 .toString());

 errorAttributes.remove(“error”);

 //...

 return errorAttributes;

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

If we want to go further and define (or override) how the application will
handle errors for a particular content type, we can register an
ErrorController bean.

Again, we can make use of the default BasicErrorController provided by
Spring Boot to help us out.

For example, imagine we want to customize how our application handles
errors triggered in XML endpoints. All we have to do is define a public method
using the using the @RequestMapping annotation and stating it produces
application/xml media type:

@Component

public class MyErrorController extends BasicErrorController {

 public MyErrorController(ErrorAttributes errorAttributes) {

 super(errorAttributes, new ErrorProperties());

 }

 @RequestMapping(produces = MediaType.APPLICATION_XML_VALUE)

 public ResponseEntity<Map<String, Object>> xmlError(HttpServletRequest request) {

 // ...

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

66

8. Conclusion

This tutorial discussed several ways to implement an exception handling
mechanism for a REST API in Spring, starting with the older mechanism and
continuing with the Spring 3.2 support and into 4.x and 5.x.

As always, the code presented in this chapter is available over on GitHub.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

67

7: REST API Discoverability and HATEOAS

68

This chapter will focus on Discoverability of the REST API, HATEOAS and
practical scenarios driven by tests.

1. Overview

69

2. Why Make the API Discoverable

Discoverability of an API is a topic that doesn’t get enough well-deserved
attention. As a consequence, very few APIs get it right. It’s also something
that, if done correctly, can make the API not only RESTful and usable but
also elegant.

To understand discoverability, we need to understand the Hypermedia As
The Engine Of Application State (HATEOAS) constraint. This constraint of a
REST API is about full discoverability of actions/transitions on a Resource
from Hypermedia (Hypertext really), as the only driver of application state.

If the interaction is to be driven by the API through the conversation itself,
concretely via Hypertext, then there can be no documentation. That would
coerce the client to make assumptions that are in fact outside of the context
of the API.

In conclusion, the server should be descriptive enough to instruct the client
how to use the API via Hypertext only. In the case of an HTTP conversation,
we could achieve this through the Link header.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

70

3. Discoverability Scenarios (Driven by Tests)

So what does it mean for a REST service to be discoverable?

Throughout this section, we’ll test individual traits of discoverability using
Junit, rest-assured and Hamcrest. Since the REST Service has been previously
secured, each test first needs to authenticate before consuming the API.

@Test

public void

 whenInvalidPOSTIsSentToValidURIOfResource_thenAllowHeaderListsTheAllowedActions(){

 // Given

 String uriOfExistingResource = restTemplate.createResource();

 // When

 Response res = givenAuth().post(uriOfExistingResource);

 // Then

 String allowHeader = res.getHeader(HttpHeaders.ALLOW);

 assertThat(allowHeader, AnyOf.anyOf(

 containsString(“GET”), containsString(“PUT”), containsString(“DELETE”)));

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

3.1. Discover the Valid HTTP Methods

When a REST service is consumed with an invalid HTTP method, the
response should be a 405 METHOD NOT ALLOWED.

The API should also help the client discover the valid HTTP methods that
are allowed for that particular resource. For this, we can use the Allow HTTP
header in the response:

http://code.google.com/p/rest-assured/
http://code.google.com/p/hamcrest/
https://www.baeldung.com/securing-a-restful-web-service-with-spring-security
https://www.baeldung.com/securing-a-restful-web-service-with-spring-security
https://gist.github.com/1341570

71

3.2. Discover the URI of Newly Created Resource

The operation of creating a new resource should always include the URI
of the newly created resource in the response. For this, we can use the
Location HTTP header.

Now, if the client does a GET on that URI, the resource should be available:

@Test

public void whenResourceIsCreated_

thenUriOfTheNewlyCreatedResourceIsDiscoverable() {

 // When

 Foo newResource = new Foo(randomAlphabetic(6));

 Response createResp = givenAuth().contentType(“application/json”)

 .body(unpersistedResource).post(getFooURL());

 String uriOfNewResource= createResp.getHeader(HttpHeaders.LOCATION);

 // Then

 Response response = givenAuth().header(HttpHeaders.ACCEPT, MediaType.

APPLICATION_JSON_VALUE)

 .get(uriOfNewResource);

 Foo resourceFromServer = response.body().as(Foo.class);

 assertThat(newResource, equalTo(resourceFromServer));

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

The test follows a simple scenario: creating a new Foo resource, then using
the HTTP response to discover the URI where the resource is now available.
It also then does a GET on that URI to retrieve the resource and compares it
to the original. This is to make sure that it was correctly saved.

72

3.3. Discover the URI to GET All Resources of That Type

@Test

public void whenResourceIsRetrieved_thenUriToGetAllResourcesIsDiscoverable() {

 // Given

 String uriOfExistingResource = createAsUri();

 // When

 Response getResponse = givenAuth().get(uriOfExistingResource);

 // Then

 String uriToAllResources = HTTPLinkHeaderUtil

 .extractURIByRel(getResponse.getHeader(“Link”), “collection”);

 Response getAllResponse = givenAuth().get(uriToAllResources);

 assertThat(getAllResponse.getStatusCode(), is(200));

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

When we GET any particular Foo resource, we should be able to discover
what we can do next: we can list all the available Foo resources. Thus, the
operation of retrieving a resource should always include in its response the
URI where to get all the resources of that type.

For this, we can again make use of the Link header:

Note that the full low-level code for extractURIByRel – responsible for
extracting the URIs by rel relation is shown here.

This test covers the thorny subject of link relations in REST: the URI to retrieve
all resources uses the rel=”collection”semantics.

This type of link relation has not yet been standardized, but is already in use
by several microformats and proposed for standardization. Usage of non-
standard link relations opens up the discussion about microformats and
richer semantics in RESTful web services.

https://gist.github.com/eugenp/8269915
http://microformats.org/wiki/existing-rel-values#non_HTML_rel_values

73

4. Other Potential Discoverable URIs and Microformats

Other URIs could potentially be discovered via the Link header, but there
is only so much the existing types of link relations allow without moving to
a richer semantic markup such as defining custom link relations, the Atom
Publishing Protocol or microformats.

For example, the client should be able to discover the URI to create new
resources when doing a GET on a specific resource. Unfortunately, there is
no link relation to model create semantics.

Luckily it’s a standard practice that the URI for creation is the same as the
URI to GET all resources of that type, with the only difference being the POST
HTTP method.

http://tools.ietf.org/html/rfc5988#section-6.2.1
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://en.wikipedia.org/wiki/Microformat

74

5. Conclusion

We’ve seen how a REST API is fully discoverable from the root and with
no prior knowledge – meaning the client is able to navigate it by doing a
GET on the root. Moving forward, all state changes are driven by the client
using the available and discoverable transitions that the REST API provides
in representations (hence Representational State Transfer).

This chapter covered the some of the traits of discoverability in the context
of a REST web service, discussing HTTP method discovery, the relation
between create and get, discovery of the URI to get all resources, etc.

The implementation of all these examples and code snippets is available
over on GitHub.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

75

8: An Intro to Spring HATEOAS

76

1. Overview

This chapter explains the process of creating hypermedia-driven REST web
service using the Spring HATEOAS project.

77

2. Spring-HATEOAS

The Spring HATEOAS project is a library of APIs that we can use to easily
create REST representations that follow the principle of HATEOAS (Hypertext
as the Engine of Application State).

Generally speaking, the principle implies that the API should guide the
client through the application by returning relevant information about the
next potential steps, along with each response.

In this chapter, we’re going to build an example using Spring HATEOAS with
the goal of decoupling the client and server, and theoretically allowing the
API to change its URI scheme without breaking clients.

78

3. Preparation

First, let’s add the Spring HATEOAS dependency:

1.

2.

3.

4.

5.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-hateoas</artifactId>

 <version>2.1.4.RELEASE</version>

</dependency>

If we’re not using Spring Boot we can add the following libraries to our
project:

<dependency>

 <groupId>org.springframework.hateoas</groupId>

 <artifactId>spring-hateoas</artifactId>

 <version>0.25.1.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.springframework.plugin</groupId>

 <artifactId>spring-plugin-core</artifactId>

 <version>1.2.0.RELEASE</version>

</dependency>

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

As always, we can search the latest versions of the starter HATEOAS, the
spring-hateoas and the spring-plugin-core dependencies in Maven Central.

Next, we have the Customer resource without Spring HATEOAS support:

public class Customer {

 private String customerId;

 private String customerName;

 private String companyName;

 // standard getters and setters

}

1.

2.

3.

4.

5.

6.

7.

8.

79

And we have a controller class without Spring HATEOAS support:

@RestController

@RequestMapping(value = “/customers”)

public class CustomerController {

 @Autowired

 private CustomerService customerService;

 @GetMapping(“/{customerId}”)

 public Customer getCustomerById(@PathVariable String customerId) {

 return customerService.getCustomerDetail(customerId);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Finally, the Customer resource representation:

{

 “customerId”: “10A”,

 “customerName”: “Jane”,

 “customerCompany”: “ABC Company”

}

1.

2.

3.

4.

5.

80

4. Adding HATEOAS Support

In a Spring HATEOAS project, we don’t need to either look up the Servlet
context nor concatenate the path variable to the base URI.

Instead, Spring HATEOAS offers three abstractions for creating the URI
– ResourceSupport, Link, and ControllerLinkBuilder. We can use these to
create the metadata and associate it to the resource representation.

1.

2.

3.

4.

5.

6.

7.

public class Customer extends ResourceSupport {

 private String customerId;

 private String customerName;

 private String companyName;

 // standard getters and setters

}

The project provides a base class called ResourceSupport to inherit from
when creating a resource representation:

4.1. Adding Hypermedia Support to a Resource

The Customer resource extends from the ResourceSupport class to inherit
the add() method. So once we create a link, we can easily set that value to
the resource representation without adding any new fields to it.

Spring HATEOAS provides a Link object to store the metadata (location or
URI of the resource).
First, we’ll create a simple link manually:
(“Link link = new Link http://localhost:8080/spring-security-rest/api/customers/10A”);

The Link object follows the Atom link syntax and consists of a rel which
identifies relation to the resource and hrefattribute which is the actual link
itself.

4.2. Creating Links

http://localhost:8080/spring-security-rest/api/customers/10A

81

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

{

 “customerId”: “10A”,

 “customerName”: “Jane”,

 “customerCompany”: “ABC Company”,

 “_links”:{

 “self”:{

 “href”:”http://localhost:8080/spring-security-rest/api/customers/10A”

 }

 }

}

Here’s how the Customer resource looks now that it contains the new link:

Another very important abstraction offered by the library is
the ControllerLinkBuilder – which simplifies building URIs by avoiding
hard-coded the links.

The following snippet shows building the customer self-link using the
ControllerLinkBuilder class:

4.3. Creating Better Links

1.

2.

linkTo(CustomerController.class).slash(customer. getCustomerId()).

withSelfRel();

Let’s have a look:

• the linkTo() method inspects the controller class and obtains its root mapping

• the slash() method adds the customerId value as the path variable of the link

• finally, the withSelfMethod() qualifies the relation as a self-link

82

In the previous section, we’ve shown a self-referencing relation. However,
more complex systems may involve other relations as well.

For example, a customer can have a relationship with orders. Let’s model the
Order class as a resource as well:

5. Relations

1.

2.

3.

4.

5.

6.

7.

public class Order extends ResourceSupport {

 private String orderId;

 private double price;

 private int quantity;

 // standard getters and setters

}

At this point, we can extend the CustomerController with a method that
returns all orders of a particular customer:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

@GetMapping(value = “/{customerId}/orders”, produces = { “application/hal+json”

})

public Resources<Order> getOrdersForCustomer(@PathVariable final String

customerId) {

 List<Order> orders = orderService.getAllOrdersForCustomer(customerId);

 for (final Order order : orders) {

 Link selfLink = linkTo(methodOn(CustomerController.class)

 .getOrderById(customerId, order.getOrderId())).withSelfRel();

 order.add(selfLink);

 }

 Link link = linkTo(methodOn(CustomerController.class)

 .getOrdersForCustomer(customerId)).withSelfRel();

 Resources<Order> result = new Resources<Order>(orders, link);

 return result;

}

83

Our method returns a Resources object to comply with the HAL return type,
as well as a _self link for each of the orders and the full list.

An important thing to notice here is that the hyperlink for the customer orders
depends on the mapping of getOrdersForCustomer() method. We’ll refer to
these types of links as method links and show how the ControllerLinkBuilder
can assist in their creation.

84

The ControllerLinkBuilder offers rich support for Spring MVC Controllers. The
following example shows how to build HATEOAS hyperlinks based on the
getOrdersForCustomer() method of the CustomerController class:

6. Links to Controller Methods

1.

2.

Link ordersLink = linkTo(methodOn(CustomerController.class)

 .getOrdersForCustomer(customerId)).withRel(“allOrders”);

The methodOn() obtains the method mapping by making dummy invocation
of the target method on the proxy controller and sets the customerId as the
path variable of the URI.

85

Let’s put the self-link and method link creation all together in a
getAllCustomers() method:

7. Spring HATEOAS in Action

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

@GetMapping(produces = { “application/hal+json” })

public Resources<Customer> getAllCustomers() {

 List<Customer> allCustomers = customerService.allCustomers();

 for (Customer customer : allCustomers) {

 String customerId = customer.getCustomerId();

 Link selfLink = linkTo(CustomerController.class).slash(customerId).

withSelfRel();

 customer.add(selfLink);

 if (orderService.getAllOrdersForCustomer(customerId).size() > 0) {

 Link ordersLink = linkTo(methodOn(CustomerController.class)

 .getOrdersForCustomer(customerId)).withRel(“allOrders”);

 customer.add(ordersLink);

 }

 }

 Link link = linkTo(CustomerController.class).withSelfRel();

 Resources<Customer> result = new Resources<Customer>(allCustomers, link);

 return result;

}

Next, let’s invoke the getAllCustomers() method:

1. curl http://localhost:8080/spring-security-rest/api/customers

86

And examine the result:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

{

 “_embedded”: {

 “customerList”: [{

 “customerId”: “10A”,

 “customerName”: “Jane”,

 “companyName”: “ABC Company”,

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/10A”

 },

 “allOrders”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/10A/orders”

 }

 }

 },{

 “customerId”: “20B”,

 “customerName”: “Bob”,

 “companyName”: “XYZ Company”,

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/20B”

 },

 “allOrders”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/20B/orders”

 }

 }

 },{

 “customerId”: “30C”,

 “customerName”: “Tim”,

 “companyName”: “CKV Company”,

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/30C”

 }

 }

 }]

 },

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers”

 }

 }

}

87

Within each resource representation, there is a _self link and the allOrders
link to extract all orders of a customer. If a customer doesn’t have orders,
then the link for orders won’t appear.

This example demonstrates how Spring HATEOAS fosters API discoverability
in a rest web service. If the link exists, the client can follow it and get all
orders for a customer:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

curl http://localhost:8080/spring-security-rest/api/customers/10A/orders

{

 “_embedded”: {

 “orderList”: [{

 “orderId”: “001A”,

 “price”: 150,

 “quantity”: 25,

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/

customers/10A/001A”

 }

 }

 },{

 “orderId”: “002A”,

 “price”: 250,

 “quantity”: 15,

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/

customers/10A/002A”

 }

 }

 }]

 },

 “_links”: {

 “self”: {

 “href”: “http://localhost:8080/spring-security-rest/api/customers/10A/

orders”

 }

 }

}

88

8. Conclusion

In this chapter, we’ve discussed how to build a hypermedia-driven Spring
REST web service using the Spring HATEOAS project.

In the example, we see that the client can have a single entry point to the
application and further actions can be taken based on the metadata in the
response representation.

This allows the server to change its URI scheme without breaking the client.
Also, the application can advertise new capabilities by putting new links or
URIs in the representation.

Finally, the full implementation of this chapter can be found in the GitHub
project.

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest
https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

89

9: REST Pagination in Spring

90

1. Overview

This tutorial will focus on the implementation of pagination in a REST API,
using Spring MVC and Spring Data.

91

2. Page as Resource vs Page as Representation

The first question when designing pagination in the context of a RESTful
architecture is whether to consider the page an actual Resource or just a
Representation of Resources.

Treating the page itself as a resource introduces a host of problems such
as no longer being able to uniquely identify resources between calls. This,
coupled with the fact that, in the persistence layer, the page is not a proper
entity but a holder that is constructed when necessary, makes the choice
straightforward: the page is part of the representation.

The next question in the pagination design in the context of REST is where
to include the paging information:

in the URI path: /foo/page/1
the URI query: /foo?page=1

Keeping in mind that a page is not a Resource, encoding the page information
in the URI is no longer an option.

We’re going to use the standard way of solving this problem by encoding
the paging information in a URI query.

92

3. The Controller

Now, for the implementation – the Spring MVC Controller for pagination is
straightforward:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

@GetMapping(params = { “page”, “size” })

public List<Foo> findPaginated(@RequestParam(“page”) int page,

 @RequestParam(“size”) int size, UriComponentsBuilder uriBuilder,

 HttpServletResponse response) {

 Page<Foo> resultPage = service.findPaginated(page, size);

 if (page > resultPage.getTotalPages()) {

 throw new MyResourceNotFoundException();

 }

 eventPublisher.publishEvent(new PaginatedResultsRetrievedEvent<Foo>(

 Foo.class, uriBuilder, response, page, resultPage.getTotalPages(), size));

 return resultPage.getContent();

}

In this example, we’re injecting the two query parameters, size and page, in
the Controller method via @RequestParam.

Alternatively, we could have used a Pageable object, which maps
the page, size, and sort parameters automatically. In addition, the
PagingAndSortingRepository entity provides out-of-the-box methods that
support using the Pageable as a parameter as well.

We’re also injecting both the Http Response and the UriComponentsBuilder
to help with discoverability – which we’re decoupling via a custom event. If
that’s not a goal of the API, you can simply remove the custom event.

Finally – note that the focus of this chapter is only the REST and the web
layer – to go deeper into the data access part of pagination you can check
out this article about Pagination with Spring Data.

http://www.petrikainulainen.net/programming/spring-framework/spring-data-jpa-tutorial-part-seven-pagination/
http://www.petrikainulainen.net/programming/spring-framework/spring-data-jpa-tutorial-part-seven-pagination/

93

4. Discoverability for REST Pagination

Within the scope of pagination, satisfying the HATEOAS constraint of REST
means enabling the client of the API to discover the next and previous pages
based on the current page in the navigation. For this purpose, we’re going to
use the Link HTTP header, coupled with the “next“, “prev“, “first” and “last”
link relation types.

In REST, Discoverability is a cross-cutting concern, applicable not only to
specific operations but to types of operations. For example, each time a
Resource is created, the URI of that Resource should be discoverable by the
client. Since this requirement is relevant for the creation of ANY Resource,
we’ll handle it separately.

We’ll decouple these concerns using events. In the case of pagination, the
event – PaginatedResultsRetrievedEvent – is fired in the controller layer. Then
we’ll implement discoverability with a custom listener for this event.

In short, the listener will check if the navigation allows for a next, previous,
first and last pages. If it does – it will add the relevant URIs to the response
as a Link HTTP header.

Let’s go step by step now. The UriComponentsBuilder passed from the
controller contains only the base URL (the host, the port and the context
path). Therefore, we’ll have to add the remaining sections:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

void addLinkHeaderOnPagedResourceRetrieval(

 UriComponentsBuilder uriBuilder, HttpServletResponse response,

 Class clazz, int page, int totalPages, int size){

 String resourceName = clazz.getSimpleName().toString().toLowerCase();

 uriBuilder.path(“/admin/” + resourceName);

 // ...

}

94

Let’s have a look at the logic of the constructNextPageUri method:

1.

2.

3.

4.

5.

6.

7.

8.

String constructNextPageUri(UriComponentsBuilder uriBuilder, int page, int

size) {

 return uriBuilder.replaceQueryParam(PAGE, page + 1)

 .replaceQueryParam(“size”, size)

 .build()

 .encode()

 .toUriString();

}

We’ll proceed similarly for the rest of the URIs that we want to include.

Finally, we’ll add the output as a response header:

Note that, for brevity, I included only a partial code sample and the full code
here.

1. response.addHeader(“Link”, linkHeader.toString());

Next, we’ll use a StringJoiner to concatenate each link. We’ll use the uriBuilder
to generate the URIs. Let’s see how we’d proceed with the link to the next
page:

1.

2.

3.

4.

5.

StringJoiner linkHeader = new StringJoiner(“, “);

if (hasNextPage(page, totalPages)){

 String uriForNextPage = constructNextPageUri(uriBuilder, page, size);

 linkHeader.add(createLinkHeader(uriForNextPage, “next”));

}

https://gist.github.com/1622997
https://gist.github.com/1622997

95

Both the main logic of pagination and discoverability are covered by small,
focused integration tests. We’ll use the REST-assured library to consume
the REST service and to verify the results.

These are a few examples of pagination integration tests; for a full test suite,
check out the GitHub project (link at the end of the chapter):

5. Test Driving Pagination

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

@Test

public void whenResourcesAreRetrievedPaged_then200IsReceived(){

 Response response = RestAssured.get(paths.getFooURL() +

“?page=0&size=2”);

 assertThat(response.getStatusCode(), is(200));

}

@Test

public void whenPageOfResourcesAreRetrievedOutOfBounds_then404IsReceived(){

 String url = getFooURL() + “?page=” + randomNumeric(5) + “&size=2”;

 Response response = RestAssured.get.get(url);

 assertThat(response.getStatusCode(), is(404));

}

@Test

public void givenResourcesExist_whenFirstPageIsRetrieved_

thenPageContainsResources(){

 createResource();

 Response response = RestAssured.get(paths.getFooURL() + “?page=0&size=2”);

 assertFalse(response.body().as(List.class).isEmpty());

}

http://code.google.com/p/rest-assured/

96

Testing that pagination is discoverable by a client is relatively straightforward,
although there is a lot of ground to cover. The tests will focus on the position
of the current page in navigation and the different URIs that should be
discoverable from each position:

6. Test Driving Pagination Discoverability

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

@Test

public void whenFirstPageOfResourcesAreRetrieved_thenSecondPageIsNext(){

 Response response = RestAssured.get(getFooURL()+”?page=0&size=2”);

 String uriToNextPage = extractURIByRel(response.getHeader(“Link”), “next”);

 assertEquals(getFooURL()+”?page=1&size=2”, uriToNextPage);

}

@Test

public void whenFirstPageOfResourcesAreRetrieved_thenNoPreviousPage(){

 Response response = RestAssured.get(getFooURL()+”?page=0&size=2”);

 String uriToPrevPage = extractURIByRel(response.getHeader(“Link”), “prev”);

 assertNull(uriToPrevPage);

}

@Test

public void whenSecondPageOfResourcesAreRetrieved_thenFirstPageIsPrevious(){

 Response response = RestAssured.get(getFooURL()+”?page=1&size=2”);

 String uriToPrevPage = extractURIByRel(response.getHeader(“Link”), “prev”);

 assertEquals(getFooURL()+”?page=0&size=2”, uriToPrevPage);

}

@Test

public void whenLastPageOfResourcesIsRetrieved_thenNoNextPageIsDiscoverable(){

 Response first = RestAssured.get(getFooURL()+”?page=0&size=2”);

 String uriToLastPage = extractURIByRel(first.getHeader(“Link”), “last”);

 Response response = RestAssured.get(uriToLastPage);

 String uriToNextPage = extractURIByRel(response.getHeader(“Link”), “next”);

 assertNull(uriToNextPage);

}

Note that the full low-level code for extractURIByRel – responsible for
extracting the URIs by rel relation is here.

https://gist.github.com/eugenp/8269915

97

On the same topic of pagination and discoverability, the choice must be
made if a client is allowed to retrieve all the resources in the system at
once, or if the client must ask for them paginated.

If the choice is made that the client cannot retrieve all resources with a single
request, and pagination is not optional but required, then several options are
available for the response to a get all request. One option is to return a 404
(Not Found) and use the Link header to make the first page discoverable:

7. Getting All Resources

1.

2.

Link=<http://localhost:8080/rest/api/admin/foo?page=0&size=2>; rel=”first”,

<http://localhost:8080/rest/api/admin/foo?page=103&size=2>; rel=”last”

Another option is to return redirect – 303 (See Other) – to the first page. A more
conservative route would be to simply return to the client a 405 (Method Not
Allowed) for the GET request.

98

A relatively different way of implementing pagination is to work with the
HTTP Range headers – Range, Content-Range, If-Range, Accept-Ranges –
and HTTP status codes – 206 (Partial Content), 413 (Request Entity Too Large),
416 (Requested Range Not Satisfiable).

One view on this approach is that the HTTP Range extensions were not
intended for pagination and that they should be managed by the server,
not by the Application. Implementing pagination based on the HTTP Range
header extensions is nevertheless technically possible, although not nearly
as common as the implementation discussed in this chapter.

8. REST Paging with Range HTTP Headers

99

In Spring Data, if we need to return a few results from the complete data
set, we can use any Pageable repository method, as it will always return a
Page. The results will be returned based on the page number, page size, and
sorting direction.

Spring Data REST automatically recognizes URL parameters like page,
size, sort etc.

To use paging methods of any repository we need to extend
PagingAndSortingRepository:

9. Spring Data REST Pagination

1.

2.

public interface SubjectRepository extends

PagingAndSortingRepository<Subject, Long>{}

If we call http://localhost:8080/subjects Spring automatically adds the page,
size, sort parameters suggestions with the API:

1.

2.

3.

4.

5.

6.

“_links” : {

 “self” : {

 “href” : “http://localhost:8080/subjects{?page,size,sort}”,

 “templated” : true

 }

}

By default, the page size is 20 but we can change it by calling something like
http://localhost:8080/subjects?page=10.

If we want to implement paging into our own custom repository API we need
to pass an additional Pageable parameter and make sure that API returns a
Page:

1.

2.

@RestResource(path = “nameContains”)

public Page<Subject> findByNameContaining(@Param(“name”) String name, Pageable p);

https://www.baeldung.com/spring-data-rest-intro

100

Whenever we add a custom API a /search endpoint gets added to the
generated links. So if we call http://localhost:8080/subjects/search we will
see a pagination capable endpoint:

1.

2.

3.

4.

“findByNameContaining” : {

 “href” : “http://localhost:8080/subjects/search/nameContains{?name,page,size,sort}”,

 “templated” : true

}

All APIs that implement PagingAndSortingRepository will return a Page. If we
need to return the list of the results from the Page, the getContent() API of
Page provides the list of records fetched as a result of the Spring Data REST
API.

The code in this section is available in the spring-data-rest project.

https://github.com/eugenp/tutorials/tree/master/spring-data-rest

101

10. Conclusion

This chapter illustrated how to implement Pagination in a REST API using
Spring, and discussed how to set up and test Discoverability.

If you want to go in depth on pagination in the persistence level, check out
my JPA or Hibernate pagination tutorials.

The implementation of all these examples and code snippets can be found
in the GitHub project.

https://www.baeldung.com/jpa-pagination
https://www.baeldung.com/hibernate-pagination
https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

102

10: Test a REST API with Java

103

1. Overview

This tutorial focuses on the basic principles and mechanics of testing a REST
API with live Integration Tests (with a JSON payload).

The main goal is to provide an introduction to testing the basic correctness
of the API – and we’re going to be using the latest version of the GitHub
REST API for the examples.

For an internal application, this kind of testing will usually run as a late step
in a Continuous Integration process, consuming the REST API after it has
already been deployed.

When testing a REST resource, there are usually a few orthogonal
responsibilities the tests should focus on:

the HTTP response code

other HTTP headers in the response

the payload (JSON, XML)

Each test should only focus on a single responsibility and include a single
assertion. Focusing on a clear separation always has benefits, but when
doing this kind of black box testing is even more important, as the general
tendency is to write complex test scenarios in the very beginning.

Another important aspect of the integration tests is adherence to the Single
Level of Abstraction Principle – the logic within a test should be written at a
high level. Details such as creating the request, sending the HTTP request
to the server, dealing with I/O, etc. should not be done inline but via utility
methods.

http://developer.github.com/v3/
http://developer.github.com/v3/

104

2. Testing the Status Code

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

@Test

public void givenUserDoesNotExists_whenUserInfoIsRetrieved_then404IsReceived()

 throws ClientProtocolException, IOException {

 // Given

 String name = RandomStringUtils.randomAlphabetic(8);

 HttpUriRequest request = new HttpGet(“https://api.github.com/users/” +

name);

 // When

 HttpResponse httpResponse = HttpClientBuilder.create().build().execute(

request);

 // Then

 assertThat(

 httpResponse.getStatusLine().getStatusCode(),

 equalTo(HttpStatus.SC_NOT_FOUND));

}

This is a rather simple test – it verifies that a basic happy path is working,
without adding too much complexity to the test suite.

If for whatever reason, it fails, then there is no need to look at any other test
for this URL until this is fixed.

105

3. Testing the Media Type

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

@Test

public void

givenRequestWithNoAcceptHeader_whenRequestIsExecuted_

thenDefaultResponseContentTypeIsJson()

 throws ClientProtocolException, IOException {

 // Given

 String jsonMimeType = “application/json”;

 HttpUriRequest request = new HttpGet(“https://api.github.com/users/eugenp”

);

 // When

 HttpResponse response = HttpClientBuilder.create().build().execute(request

);

 // Then

 String mimeType = ContentType.getOrDefault(response.getEntity()).

getMimeType();

 assertEquals(jsonMimeType, mimeType);

}

This ensures that the response actually contains JSON data.

As you might have noticed, we’re following a logical progression of tests
– first the Response status code (to ensure that the request was OK), then
the media type of the Response, and only in the next test will we look at
the actual JSON payload.

106

4. Testing the JSON Payload

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

@Test

public void

 givenUserExists_whenUserInformationIsRetrieved_

thenRetrievedResourceIsCorrect()

 throws ClientProtocolException, IOException {

 // Given

 HttpUriRequest request = new HttpGet(“https://api.github.com/users/eugenp”

);

 // When

 HttpResponse response = HttpClientBuilder.create().build().execute(request

);

 // Then

 GitHubUser resource = RetrieveUtil.retrieveResourceFromResponse(

 response, GitHubUser.class);

 assertThat(“eugenp”, Matchers.is(resource.getLogin()));

}

In this case, I know the default representation of GitHub resources is JSON,
but usually, the Content-Type header of the response should be tested
alongside the Accept header of the request – the client asks for a particular
type of representation via Accept, which the server should honor.

107

5. Utilities for Testing

1.

2.

3.

4.

5.

6.

7.

8.

9.

public static <T> T retrieveResourceFromResponse(HttpResponse response,

Class<T> clazz)

 throws IOException {

 String jsonFromResponse = EntityUtils.toString(response.getEntity());

 ObjectMapper mapper = new ObjectMapper()

 .configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);

 return mapper.readValue(jsonFromResponse, clazz);

}

We’re going to use Jackson 2 to unmarshall the raw JSON String into a type-
safe Java Entity:

1.

2.

3.

4.

5.

6.

public class GitHubUser {

 private String login;

 // standard getters and setters

}

We’re only using a simple utility to keep the tests clean, readable and at a
high level of abstraction:

Notice that Jackson is ignoring unknown properties that the GitHub API
is sending our way – that’s simply because the representation of a user
resource on GitHub gets pretty complex – and we don’t need any of that
information here.

https://www.baeldung.com/jackson-deserialize-json-unknown-properties

108

6. Dependencies

The utilities and tests make use of the following libraries, all available in
Maven Central:

• HttpClient

• Jackson 2

• Hamcrest (optional)

http://hc.apache.org/httpcomponents-client-ga/index.html
https://github.com/FasterXML/jackson
http://code.google.com/p/hamcrest/

109

7. Conclusion

This is only one part of what the complete integration testing suite should
be. The tests focus on ensuring basic correctness for the REST API, without
going into more complex scenarios,

For example, the following are not covered: Discoverability of the API,
consumption of different representations for the same Resource, etc.

The implementation of all these examples and code snippets can be found
over on GitHub.

V3.3

https://github.com/eugenp/tutorials/tree/master/spring-boot-rest

